\left\{ \begin{array} { l } { - 5 x + y = - 12 } \\ { 5 y = 10 x - 15 } \end{array} \right.
x, yని పరిష్కరించండి
x=3
y=3
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
5y-10x=-15
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 10xని వ్యవకలనం చేయండి.
-5x+y=-12,-10x+5y=-15
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
-5x+y=-12
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
-5x=-y-12
సమీకరణము యొక్క రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x=-\frac{1}{5}\left(-y-12\right)
రెండు వైపులా -5తో భాగించండి.
x=\frac{1}{5}y+\frac{12}{5}
-\frac{1}{5} సార్లు -y-12ని గుణించండి.
-10\left(\frac{1}{5}y+\frac{12}{5}\right)+5y=-15
మరొక సమీకరణములో xను \frac{12+y}{5} స్థానంలో ప్రతిక్షేపించండి, -10x+5y=-15.
-2y-24+5y=-15
-10 సార్లు \frac{12+y}{5}ని గుణించండి.
3y-24=-15
5yకు -2yని కూడండి.
3y=9
సమీకరణం యొక్క రెండు వైపులా 24ని కూడండి.
y=3
రెండు వైపులా 3తో భాగించండి.
x=\frac{1}{5}\times 3+\frac{12}{5}
x=\frac{1}{5}y+\frac{12}{5}లో yను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{3+12}{5}
\frac{1}{5} సార్లు 3ని గుణించండి.
x=3
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{3}{5}కు \frac{12}{5}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=3,y=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
5y-10x=-15
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 10xని వ్యవకలనం చేయండి.
-5x+y=-12,-10x+5y=-15
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}-5&1\\-10&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-12\\-15\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}-5&1\\-10&5\end{matrix}\right))\left(\begin{matrix}-5&1\\-10&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\-10&5\end{matrix}\right))\left(\begin{matrix}-12\\-15\end{matrix}\right)
\left(\begin{matrix}-5&1\\-10&5\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\-10&5\end{matrix}\right))\left(\begin{matrix}-12\\-15\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\-10&5\end{matrix}\right))\left(\begin{matrix}-12\\-15\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{-5\times 5-\left(-10\right)}&-\frac{1}{-5\times 5-\left(-10\right)}\\-\frac{-10}{-5\times 5-\left(-10\right)}&-\frac{5}{-5\times 5-\left(-10\right)}\end{matrix}\right)\left(\begin{matrix}-12\\-15\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{15}\\-\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-12\\-15\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-12\right)+\frac{1}{15}\left(-15\right)\\-\frac{2}{3}\left(-12\right)+\frac{1}{3}\left(-15\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\3\end{matrix}\right)
అంకగణితము చేయండి.
x=3,y=3
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
5y-10x=-15
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 10xని వ్యవకలనం చేయండి.
-5x+y=-12,-10x+5y=-15
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-10\left(-5\right)x-10y=-10\left(-12\right),-5\left(-10\right)x-5\times 5y=-5\left(-15\right)
-5x మరియు -10xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -10తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను -5తో గుణించండి.
50x-10y=120,50x-25y=75
సరళీకృతం చేయండి.
50x-50x-10y+25y=120-75
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 50x-25y=75ని 50x-10y=120 నుండి వ్యవకలనం చేయండి.
-10y+25y=120-75
-50xకు 50xని కూడండి. 50x మరియు -50x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
15y=120-75
25yకు -10yని కూడండి.
15y=45
-75కు 120ని కూడండి.
y=3
రెండు వైపులా 15తో భాగించండి.
-10x+5\times 3=-15
-10x+5y=-15లో yను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-10x+15=-15
5 సార్లు 3ని గుణించండి.
-10x=-30
సమీకరణము యొక్క రెండు భాగాల నుండి 15ని వ్యవకలనం చేయండి.
x=3
రెండు వైపులా -10తో భాగించండి.
x=3,y=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}