మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

\frac{1}{4}x+\frac{1}{3}y=7,\frac{2}{3}x+\frac{1}{2}y=14
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
\frac{1}{4}x+\frac{1}{3}y=7
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
\frac{1}{4}x=-\frac{1}{3}y+7
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{y}{3}ని వ్యవకలనం చేయండి.
x=4\left(-\frac{1}{3}y+7\right)
రెండు వైపులా 4తో గుణించండి.
x=-\frac{4}{3}y+28
4 సార్లు -\frac{y}{3}+7ని గుణించండి.
\frac{2}{3}\left(-\frac{4}{3}y+28\right)+\frac{1}{2}y=14
మరొక సమీకరణములో xను -\frac{4y}{3}+28 స్థానంలో ప్రతిక్షేపించండి, \frac{2}{3}x+\frac{1}{2}y=14.
-\frac{8}{9}y+\frac{56}{3}+\frac{1}{2}y=14
\frac{2}{3} సార్లు -\frac{4y}{3}+28ని గుణించండి.
-\frac{7}{18}y+\frac{56}{3}=14
\frac{y}{2}కు -\frac{8y}{9}ని కూడండి.
-\frac{7}{18}y=-\frac{14}{3}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{56}{3}ని వ్యవకలనం చేయండి.
y=12
సమీకరణము యొక్క రెండు వైపులా -\frac{7}{18}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{4}{3}\times 12+28
x=-\frac{4}{3}y+28లో yను 12 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-16+28
-\frac{4}{3} సార్లు 12ని గుణించండి.
x=12
-16కు 28ని కూడండి.
x=12,y=12
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
\frac{1}{4}x+\frac{1}{3}y=7,\frac{2}{3}x+\frac{1}{2}y=14
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\14\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}7\\14\end{matrix}\right)
\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}7\\14\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}7\\14\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{2}}{\frac{1}{4}\times \frac{1}{2}-\frac{1}{3}\times \frac{2}{3}}&-\frac{\frac{1}{3}}{\frac{1}{4}\times \frac{1}{2}-\frac{1}{3}\times \frac{2}{3}}\\-\frac{\frac{2}{3}}{\frac{1}{4}\times \frac{1}{2}-\frac{1}{3}\times \frac{2}{3}}&\frac{\frac{1}{4}}{\frac{1}{4}\times \frac{1}{2}-\frac{1}{3}\times \frac{2}{3}}\end{matrix}\right)\left(\begin{matrix}7\\14\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{36}{7}&\frac{24}{7}\\\frac{48}{7}&-\frac{18}{7}\end{matrix}\right)\left(\begin{matrix}7\\14\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{36}{7}\times 7+\frac{24}{7}\times 14\\\frac{48}{7}\times 7-\frac{18}{7}\times 14\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\12\end{matrix}\right)
అంకగణితము చేయండి.
x=12,y=12
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
\frac{1}{4}x+\frac{1}{3}y=7,\frac{2}{3}x+\frac{1}{2}y=14
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
\frac{2}{3}\times \frac{1}{4}x+\frac{2}{3}\times \frac{1}{3}y=\frac{2}{3}\times 7,\frac{1}{4}\times \frac{2}{3}x+\frac{1}{4}\times \frac{1}{2}y=\frac{1}{4}\times 14
\frac{x}{4} మరియు \frac{2x}{3}ని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను \frac{2}{3}తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను \frac{1}{4}తో గుణించండి.
\frac{1}{6}x+\frac{2}{9}y=\frac{14}{3},\frac{1}{6}x+\frac{1}{8}y=\frac{7}{2}
సరళీకృతం చేయండి.
\frac{1}{6}x-\frac{1}{6}x+\frac{2}{9}y-\frac{1}{8}y=\frac{14}{3}-\frac{7}{2}
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా \frac{1}{6}x+\frac{1}{8}y=\frac{7}{2}ని \frac{1}{6}x+\frac{2}{9}y=\frac{14}{3} నుండి వ్యవకలనం చేయండి.
\frac{2}{9}y-\frac{1}{8}y=\frac{14}{3}-\frac{7}{2}
-\frac{x}{6}కు \frac{x}{6}ని కూడండి. \frac{x}{6} మరియు -\frac{x}{6} విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
\frac{7}{72}y=\frac{14}{3}-\frac{7}{2}
-\frac{y}{8}కు \frac{2y}{9}ని కూడండి.
\frac{7}{72}y=\frac{7}{6}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{7}{2}కు \frac{14}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
y=12
సమీకరణము యొక్క రెండు వైపులా \frac{7}{72}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
\frac{2}{3}x+\frac{1}{2}\times 12=14
\frac{2}{3}x+\frac{1}{2}y=14లో yను 12 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
\frac{2}{3}x+6=14
\frac{1}{2} సార్లు 12ని గుణించండి.
\frac{2}{3}x=8
సమీకరణము యొక్క రెండు భాగాల నుండి 6ని వ్యవకలనం చేయండి.
x=12
సమీకరణము యొక్క రెండు వైపులా \frac{2}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=12,y=12
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.