మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

\frac{2}{3}x+\frac{3}{4}y=\frac{17}{12},\frac{1}{6}x-\frac{1}{2}y=-\frac{1}{3}
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
\frac{2}{3}x+\frac{3}{4}y=\frac{17}{12}
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
\frac{2}{3}x=-\frac{3}{4}y+\frac{17}{12}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{3y}{4}ని వ్యవకలనం చేయండి.
x=\frac{3}{2}\left(-\frac{3}{4}y+\frac{17}{12}\right)
సమీకరణము యొక్క రెండు వైపులా \frac{2}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{9}{8}y+\frac{17}{8}
\frac{3}{2} సార్లు -\frac{3y}{4}+\frac{17}{12}ని గుణించండి.
\frac{1}{6}\left(-\frac{9}{8}y+\frac{17}{8}\right)-\frac{1}{2}y=-\frac{1}{3}
మరొక సమీకరణములో xను \frac{-9y+17}{8} స్థానంలో ప్రతిక్షేపించండి, \frac{1}{6}x-\frac{1}{2}y=-\frac{1}{3}.
-\frac{3}{16}y+\frac{17}{48}-\frac{1}{2}y=-\frac{1}{3}
\frac{1}{6} సార్లు \frac{-9y+17}{8}ని గుణించండి.
-\frac{11}{16}y+\frac{17}{48}=-\frac{1}{3}
-\frac{y}{2}కు -\frac{3y}{16}ని కూడండి.
-\frac{11}{16}y=-\frac{11}{16}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{17}{48}ని వ్యవకలనం చేయండి.
y=1
సమీకరణము యొక్క రెండు వైపులా -\frac{11}{16}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{-9+17}{8}
x=-\frac{9}{8}y+\frac{17}{8}లో yను 1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=1
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{9}{8}కు \frac{17}{8}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=1,y=1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
\frac{2}{3}x+\frac{3}{4}y=\frac{17}{12},\frac{1}{6}x-\frac{1}{2}y=-\frac{1}{3}
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}\frac{2}{3}&\frac{3}{4}\\\frac{1}{6}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{12}\\-\frac{1}{3}\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}\frac{2}{3}&\frac{3}{4}\\\frac{1}{6}&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{2}{3}&\frac{3}{4}\\\frac{1}{6}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&\frac{3}{4}\\\frac{1}{6}&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{17}{12}\\-\frac{1}{3}\end{matrix}\right)
\left(\begin{matrix}\frac{2}{3}&\frac{3}{4}\\\frac{1}{6}&-\frac{1}{2}\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&\frac{3}{4}\\\frac{1}{6}&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{17}{12}\\-\frac{1}{3}\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&\frac{3}{4}\\\frac{1}{6}&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{17}{12}\\-\frac{1}{3}\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{2}}{\frac{2}{3}\left(-\frac{1}{2}\right)-\frac{3}{4}\times \frac{1}{6}}&-\frac{\frac{3}{4}}{\frac{2}{3}\left(-\frac{1}{2}\right)-\frac{3}{4}\times \frac{1}{6}}\\-\frac{\frac{1}{6}}{\frac{2}{3}\left(-\frac{1}{2}\right)-\frac{3}{4}\times \frac{1}{6}}&\frac{\frac{2}{3}}{\frac{2}{3}\left(-\frac{1}{2}\right)-\frac{3}{4}\times \frac{1}{6}}\end{matrix}\right)\left(\begin{matrix}\frac{17}{12}\\-\frac{1}{3}\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{11}&\frac{18}{11}\\\frac{4}{11}&-\frac{16}{11}\end{matrix}\right)\left(\begin{matrix}\frac{17}{12}\\-\frac{1}{3}\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{11}\times \frac{17}{12}+\frac{18}{11}\left(-\frac{1}{3}\right)\\\frac{4}{11}\times \frac{17}{12}-\frac{16}{11}\left(-\frac{1}{3}\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
అంకగణితము చేయండి.
x=1,y=1
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
\frac{2}{3}x+\frac{3}{4}y=\frac{17}{12},\frac{1}{6}x-\frac{1}{2}y=-\frac{1}{3}
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
\frac{1}{6}\times \frac{2}{3}x+\frac{1}{6}\times \frac{3}{4}y=\frac{1}{6}\times \frac{17}{12},\frac{2}{3}\times \frac{1}{6}x+\frac{2}{3}\left(-\frac{1}{2}\right)y=\frac{2}{3}\left(-\frac{1}{3}\right)
\frac{2x}{3} మరియు \frac{x}{6}ని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను \frac{1}{6}తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను \frac{2}{3}తో గుణించండి.
\frac{1}{9}x+\frac{1}{8}y=\frac{17}{72},\frac{1}{9}x-\frac{1}{3}y=-\frac{2}{9}
సరళీకృతం చేయండి.
\frac{1}{9}x-\frac{1}{9}x+\frac{1}{8}y+\frac{1}{3}y=\frac{17}{72}+\frac{2}{9}
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా \frac{1}{9}x-\frac{1}{3}y=-\frac{2}{9}ని \frac{1}{9}x+\frac{1}{8}y=\frac{17}{72} నుండి వ్యవకలనం చేయండి.
\frac{1}{8}y+\frac{1}{3}y=\frac{17}{72}+\frac{2}{9}
-\frac{x}{9}కు \frac{x}{9}ని కూడండి. \frac{x}{9} మరియు -\frac{x}{9} విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
\frac{11}{24}y=\frac{17}{72}+\frac{2}{9}
\frac{y}{3}కు \frac{y}{8}ని కూడండి.
\frac{11}{24}y=\frac{11}{24}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{2}{9}కు \frac{17}{72}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
y=1
సమీకరణము యొక్క రెండు వైపులా \frac{11}{24}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
\frac{1}{6}x-\frac{1}{2}=-\frac{1}{3}
\frac{1}{6}x-\frac{1}{2}y=-\frac{1}{3}లో yను 1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
\frac{1}{6}x=\frac{1}{6}
సమీకరణం యొక్క రెండు వైపులా \frac{1}{2}ని కూడండి.
x=1
రెండు వైపులా 6తో గుణించండి.
x=1,y=1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.