\left\{ \begin{array} { l } { \frac { 2 } { 3 } x + \frac { 1 } { 2 } y = 5 } \\ { x - 3 y = 6 . } \end{array} \right.
x, yని పరిష్కరించండి
x = \frac{36}{5} = 7\frac{1}{5} = 7.2
y=\frac{2}{5}=0.4
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\frac{2}{3}x+\frac{1}{2}y=5,x-3y=6
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
\frac{2}{3}x+\frac{1}{2}y=5
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
\frac{2}{3}x=-\frac{1}{2}y+5
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{y}{2}ని వ్యవకలనం చేయండి.
x=\frac{3}{2}\left(-\frac{1}{2}y+5\right)
సమీకరణము యొక్క రెండు వైపులా \frac{2}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{3}{4}y+\frac{15}{2}
\frac{3}{2} సార్లు -\frac{y}{2}+5ని గుణించండి.
-\frac{3}{4}y+\frac{15}{2}-3y=6
మరొక సమీకరణములో xను -\frac{3y}{4}+\frac{15}{2} స్థానంలో ప్రతిక్షేపించండి, x-3y=6.
-\frac{15}{4}y+\frac{15}{2}=6
-3yకు -\frac{3y}{4}ని కూడండి.
-\frac{15}{4}y=-\frac{3}{2}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{15}{2}ని వ్యవకలనం చేయండి.
y=\frac{2}{5}
సమీకరణము యొక్క రెండు వైపులా -\frac{15}{4}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{3}{4}\times \frac{2}{5}+\frac{15}{2}
x=-\frac{3}{4}y+\frac{15}{2}లో yను \frac{2}{5} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{3}{10}+\frac{15}{2}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{3}{4} సార్లు \frac{2}{5}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{36}{5}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{3}{10}కు \frac{15}{2}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{36}{5},y=\frac{2}{5}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
\frac{2}{3}x+\frac{1}{2}y=5,x-3y=6
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\6\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right))\left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
\left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{\frac{2}{3}\left(-3\right)-\frac{1}{2}}&-\frac{\frac{1}{2}}{\frac{2}{3}\left(-3\right)-\frac{1}{2}}\\-\frac{1}{\frac{2}{3}\left(-3\right)-\frac{1}{2}}&\frac{\frac{2}{3}}{\frac{2}{3}\left(-3\right)-\frac{1}{2}}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}&\frac{1}{5}\\\frac{2}{5}&-\frac{4}{15}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}\times 5+\frac{1}{5}\times 6\\\frac{2}{5}\times 5-\frac{4}{15}\times 6\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{36}{5}\\\frac{2}{5}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{36}{5},y=\frac{2}{5}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
\frac{2}{3}x+\frac{1}{2}y=5,x-3y=6
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
\frac{2}{3}x+\frac{1}{2}y=5,\frac{2}{3}x+\frac{2}{3}\left(-3\right)y=\frac{2}{3}\times 6
\frac{2x}{3} మరియు xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను \frac{2}{3}తో గుణించండి.
\frac{2}{3}x+\frac{1}{2}y=5,\frac{2}{3}x-2y=4
సరళీకృతం చేయండి.
\frac{2}{3}x-\frac{2}{3}x+\frac{1}{2}y+2y=5-4
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా \frac{2}{3}x-2y=4ని \frac{2}{3}x+\frac{1}{2}y=5 నుండి వ్యవకలనం చేయండి.
\frac{1}{2}y+2y=5-4
-\frac{2x}{3}కు \frac{2x}{3}ని కూడండి. \frac{2x}{3} మరియు -\frac{2x}{3} విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
\frac{5}{2}y=5-4
2yకు \frac{y}{2}ని కూడండి.
\frac{5}{2}y=1
-4కు 5ని కూడండి.
y=\frac{2}{5}
సమీకరణము యొక్క రెండు వైపులా \frac{5}{2}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x-3\times \frac{2}{5}=6
x-3y=6లో yను \frac{2}{5} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x-\frac{6}{5}=6
-3 సార్లు \frac{2}{5}ని గుణించండి.
x=\frac{36}{5}
సమీకరణం యొక్క రెండు వైపులా \frac{6}{5}ని కూడండి.
x=\frac{36}{5},y=\frac{2}{5}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}