మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

5x-y=27,-3x+4y=-23
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
5x-y=27
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
5x=y+27
సమీకరణం యొక్క రెండు వైపులా yని కూడండి.
x=\frac{1}{5}\left(y+27\right)
రెండు వైపులా 5తో భాగించండి.
x=\frac{1}{5}y+\frac{27}{5}
\frac{1}{5} సార్లు y+27ని గుణించండి.
-3\left(\frac{1}{5}y+\frac{27}{5}\right)+4y=-23
మరొక సమీకరణములో xను \frac{27+y}{5} స్థానంలో ప్రతిక్షేపించండి, -3x+4y=-23.
-\frac{3}{5}y-\frac{81}{5}+4y=-23
-3 సార్లు \frac{27+y}{5}ని గుణించండి.
\frac{17}{5}y-\frac{81}{5}=-23
4yకు -\frac{3y}{5}ని కూడండి.
\frac{17}{5}y=-\frac{34}{5}
సమీకరణం యొక్క రెండు వైపులా \frac{81}{5}ని కూడండి.
y=-2
సమీకరణము యొక్క రెండు వైపులా \frac{17}{5}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{1}{5}\left(-2\right)+\frac{27}{5}
x=\frac{1}{5}y+\frac{27}{5}లో yను -2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-2+27}{5}
\frac{1}{5} సార్లు -2ని గుణించండి.
x=5
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{2}{5}కు \frac{27}{5}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=5,y=-2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
5x-y=27,-3x+4y=-23
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}5&-1\\-3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\-23\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}5&-1\\-3&4\end{matrix}\right))\left(\begin{matrix}5&-1\\-3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-3&4\end{matrix}\right))\left(\begin{matrix}27\\-23\end{matrix}\right)
\left(\begin{matrix}5&-1\\-3&4\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-3&4\end{matrix}\right))\left(\begin{matrix}27\\-23\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-3&4\end{matrix}\right))\left(\begin{matrix}27\\-23\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5\times 4-\left(-\left(-3\right)\right)}&-\frac{-1}{5\times 4-\left(-\left(-3\right)\right)}\\-\frac{-3}{5\times 4-\left(-\left(-3\right)\right)}&\frac{5}{5\times 4-\left(-\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}27\\-23\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}&\frac{1}{17}\\\frac{3}{17}&\frac{5}{17}\end{matrix}\right)\left(\begin{matrix}27\\-23\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}\times 27+\frac{1}{17}\left(-23\right)\\\frac{3}{17}\times 27+\frac{5}{17}\left(-23\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
అంకగణితము చేయండి.
x=5,y=-2
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
5x-y=27,-3x+4y=-23
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-3\times 5x-3\left(-1\right)y=-3\times 27,5\left(-3\right)x+5\times 4y=5\left(-23\right)
5x మరియు -3xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -3తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 5తో గుణించండి.
-15x+3y=-81,-15x+20y=-115
సరళీకృతం చేయండి.
-15x+15x+3y-20y=-81+115
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -15x+20y=-115ని -15x+3y=-81 నుండి వ్యవకలనం చేయండి.
3y-20y=-81+115
15xకు -15xని కూడండి. -15x మరియు 15x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-17y=-81+115
-20yకు 3yని కూడండి.
-17y=34
115కు -81ని కూడండి.
y=-2
రెండు వైపులా -17తో భాగించండి.
-3x+4\left(-2\right)=-23
-3x+4y=-23లో yను -2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-3x-8=-23
4 సార్లు -2ని గుణించండి.
-3x=-15
సమీకరణం యొక్క రెండు వైపులా 8ని కూడండి.
x=5
రెండు వైపులా -3తో భాగించండి.
x=5,y=-2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.