మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

-x+5y=1,-2x-5y=11
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
-x+5y=1
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
-x=-5y+1
సమీకరణము యొక్క రెండు భాగాల నుండి 5yని వ్యవకలనం చేయండి.
x=-\left(-5y+1\right)
రెండు వైపులా -1తో భాగించండి.
x=5y-1
-1 సార్లు -5y+1ని గుణించండి.
-2\left(5y-1\right)-5y=11
మరొక సమీకరణములో xను 5y-1 స్థానంలో ప్రతిక్షేపించండి, -2x-5y=11.
-10y+2-5y=11
-2 సార్లు 5y-1ని గుణించండి.
-15y+2=11
-5yకు -10yని కూడండి.
-15y=9
సమీకరణము యొక్క రెండు భాగాల నుండి 2ని వ్యవకలనం చేయండి.
y=-\frac{3}{5}
రెండు వైపులా -15తో భాగించండి.
x=5\left(-\frac{3}{5}\right)-1
x=5y-1లో yను -\frac{3}{5} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-3-1
5 సార్లు -\frac{3}{5}ని గుణించండి.
x=-4
-3కు -1ని కూడండి.
x=-4,y=-\frac{3}{5}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
-x+5y=1,-2x-5y=11
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}-1&5\\-2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\11\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}-1&5\\-2&-5\end{matrix}\right))\left(\begin{matrix}-1&5\\-2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&5\\-2&-5\end{matrix}\right))\left(\begin{matrix}1\\11\end{matrix}\right)
\left(\begin{matrix}-1&5\\-2&-5\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&5\\-2&-5\end{matrix}\right))\left(\begin{matrix}1\\11\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&5\\-2&-5\end{matrix}\right))\left(\begin{matrix}1\\11\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-\left(-5\right)-5\left(-2\right)}&-\frac{5}{-\left(-5\right)-5\left(-2\right)}\\-\frac{-2}{-\left(-5\right)-5\left(-2\right)}&-\frac{1}{-\left(-5\right)-5\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}1\\11\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&-\frac{1}{3}\\\frac{2}{15}&-\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}1\\11\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}-\frac{1}{3}\times 11\\\frac{2}{15}-\frac{1}{15}\times 11\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-\frac{3}{5}\end{matrix}\right)
అంకగణితము చేయండి.
x=-4,y=-\frac{3}{5}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
-x+5y=1,-2x-5y=11
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-2\left(-1\right)x-2\times 5y=-2,-\left(-2\right)x-\left(-5y\right)=-11
-x మరియు -2xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -2తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను -1తో గుణించండి.
2x-10y=-2,2x+5y=-11
సరళీకృతం చేయండి.
2x-2x-10y-5y=-2+11
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 2x+5y=-11ని 2x-10y=-2 నుండి వ్యవకలనం చేయండి.
-10y-5y=-2+11
-2xకు 2xని కూడండి. 2x మరియు -2x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-15y=-2+11
-5yకు -10yని కూడండి.
-15y=9
11కు -2ని కూడండి.
y=-\frac{3}{5}
రెండు వైపులా -15తో భాగించండి.
-2x-5\left(-\frac{3}{5}\right)=11
-2x-5y=11లో yను -\frac{3}{5} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-2x+3=11
-5 సార్లు -\frac{3}{5}ని గుణించండి.
-2x=8
సమీకరణము యొక్క రెండు భాగాల నుండి 3ని వ్యవకలనం చేయండి.
x=-4
రెండు వైపులా -2తో భాగించండి.
x=-4,y=-\frac{3}{5}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.