మూల్యాంకనం చేయండి
0.76
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\int _{0}^{2}\left(0.36x-0.05x^{2}\right)x\mathrm{d}x
-0.1తో -3.6x+0.5x^{2}ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
\int _{0}^{2}0.36x^{2}-0.05x^{3}\mathrm{d}x
xతో 0.36x-0.05x^{2}ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
\int \frac{9x^{2}}{25}-\frac{x^{3}}{20}\mathrm{d}x
అనిశ్చితమైన పూర్ణాంక ప్రమేయాన్ని మూల్యాంకనం చేయండి.
\int \frac{9x^{2}}{25}\mathrm{d}x+\int -\frac{x^{3}}{20}\mathrm{d}x
మొత్తం పదాన్ని పదం ద్వారా సమగ్రపరచండి.
\frac{9\int x^{2}\mathrm{d}x}{25}-\frac{\int x^{3}\mathrm{d}x}{20}
ప్రతి పదంలో స్థిరాంకం లబ్దమూలాన్ని తీసివేయి.
\frac{3x^{3}}{25}-\frac{\int x^{3}\mathrm{d}x}{20}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x^{2}\mathrm{d}x ను \frac{x^{3}}{3}తో భర్తీ చేయండి. 0.36 సార్లు \frac{x^{3}}{3}ని గుణించండి.
\frac{3x^{3}}{25}-\frac{x^{4}}{80}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x^{3}\mathrm{d}x ను \frac{x^{4}}{4}తో భర్తీ చేయండి. -0.05 సార్లు \frac{x^{4}}{4}ని గుణించండి.
\frac{3}{25}\times 2^{3}-\frac{2^{4}}{80}-\left(\frac{3}{25}\times 0^{3}-\frac{0^{4}}{80}\right)
నిశ్చితమైన అనుకలము అనేది అనుకలము యొక్క ఎగువ పరిమితితో మూల్యాంకనం చేయబడిన సూత్రీకరణ యొక్క ప్రతి-వ్యుత్పన్నము నుండి అనుకలము యొక్క దిగువ పరిమితితో మూల్యాంకనం చేయబడిన ప్రతి-వ్యుత్పన్నమును వ్యవకలనము చేసిన మొత్తంతో సమానం.
\frac{19}{25}
సరళీకృతం చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}