మెయిన్ కంటెంట్ కు వెళ్లండి
మూల్యాంకనం చేయండి
Tick mark Image
x ఆధారంగా వేరు పరచండి
Tick mark Image

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

\int \frac{x\left(x-2\right)\left(x+2\right)\left(x^{2}+5\right)}{x+2}\mathrm{d}x
ఇప్పటికే \frac{x^{5}+x^{3}-20x}{x+2}లో గుణకం చేయని సూత్రీకరణలను గుణకం చేయండి.
\int x\left(x-2\right)\left(x^{2}+5\right)\mathrm{d}x
లవము మరియు హారము రెండింటిలో x+2ని పరిష్కరించండి.
\int x^{4}-2x^{3}+5x^{2}-10x\mathrm{d}x
సూత్రీకరణను విస్తరించండి.
\int x^{4}\mathrm{d}x+\int -2x^{3}\mathrm{d}x+\int 5x^{2}\mathrm{d}x+\int -10x\mathrm{d}x
మొత్తం పదాన్ని పదం ద్వారా సమగ్రపరచండి.
\int x^{4}\mathrm{d}x-2\int x^{3}\mathrm{d}x+5\int x^{2}\mathrm{d}x-10\int x\mathrm{d}x
ప్రతి పదంలో స్థిరాంకం లబ్దమూలాన్ని తీసివేయి.
\frac{x^{5}}{5}-2\int x^{3}\mathrm{d}x+5\int x^{2}\mathrm{d}x-10\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x^{4}\mathrm{d}x ను \frac{x^{5}}{5}తో భర్తీ చేయండి.
\frac{x^{5}}{5}-\frac{x^{4}}{2}+5\int x^{2}\mathrm{d}x-10\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x^{3}\mathrm{d}x ను \frac{x^{4}}{4}తో భర్తీ చేయండి. -2 సార్లు \frac{x^{4}}{4}ని గుణించండి.
\frac{x^{5}}{5}-\frac{x^{4}}{2}+\frac{5x^{3}}{3}-10\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x^{2}\mathrm{d}x ను \frac{x^{3}}{3}తో భర్తీ చేయండి. 5 సార్లు \frac{x^{3}}{3}ని గుణించండి.
\frac{x^{5}}{5}-\frac{x^{4}}{2}+\frac{5x^{3}}{3}-5x^{2}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x\mathrm{d}x ను \frac{x^{2}}{2}తో భర్తీ చేయండి. -10 సార్లు \frac{x^{2}}{2}ని గుణించండి.
-5x^{2}+\frac{5x^{3}}{3}-\frac{x^{4}}{2}+\frac{x^{5}}{5}
సరళీకృతం చేయండి.
-5x^{2}+\frac{5x^{3}}{3}-\frac{x^{4}}{2}+\frac{x^{5}}{5}+С
f\left(x\right)యొక్క యాంటీడిరివేటివ్ F\left(x\right)అయితే, అప్పుడు f\left(x\right)యొక్క అన్ని యాంటీడిరివేటివ్స్ సమితి F\left(x\right)+C ద్వారా ఇవ్వబడుతుంది. అందువల్ల, ఫలితానికి ఏకీకరణ యొక్క స్థిరాంకం C\in \mathrm{R}ని జోడించండి.