మెయిన్ కంటెంట్ కు వెళ్లండి
మూల్యాంకనం చేయండి
Tick mark Image

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

\int _{0}^{2}16x^{2}-8xx^{3}+\left(x^{3}\right)^{2}\mathrm{d}x
\left(4x-x^{3}\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ఉపయోగించండి.
\int _{0}^{2}16x^{2}-8x^{4}+\left(x^{3}\right)^{2}\mathrm{d}x
ఒకే పీఠము యొక్క ఘాతములను భాగించడం కోసం, వాటి ఘాతాంకములను జోడించండి. 1కి 3ని జోడించి 4 పొందండి.
\int _{0}^{2}16x^{2}-8x^{4}+x^{6}\mathrm{d}x
ఒక సంఖ్య యొక్క ఘాతముని మరొక ఘాతముతో హెచ్చించడం కోసం ఘాతాంకాలను గుణించండి. 3 మరియు 2ని గుణించి 6 పొందండి.
\int 16x^{2}-8x^{4}+x^{6}\mathrm{d}x
అనిశ్చితమైన పూర్ణాంక ప్రమేయాన్ని మూల్యాంకనం చేయండి.
\int 16x^{2}\mathrm{d}x+\int -8x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
మొత్తం పదాన్ని పదం ద్వారా సమగ్రపరచండి.
16\int x^{2}\mathrm{d}x-8\int x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
ప్రతి పదంలో స్థిరాంకం లబ్దమూలాన్ని తీసివేయి.
\frac{16x^{3}}{3}-8\int x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x^{2}\mathrm{d}x ను \frac{x^{3}}{3}తో భర్తీ చేయండి. 16 సార్లు \frac{x^{3}}{3}ని గుణించండి.
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\int x^{6}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x^{4}\mathrm{d}x ను \frac{x^{5}}{5}తో భర్తీ చేయండి. -8 సార్లు \frac{x^{5}}{5}ని గుణించండి.
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\frac{x^{7}}{7}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x^{6}\mathrm{d}x ను \frac{x^{7}}{7}తో భర్తీ చేయండి.
\frac{x^{7}}{7}-\frac{8x^{5}}{5}+\frac{16x^{3}}{3}
సరళీకృతం చేయండి.
\frac{2^{7}}{7}-\frac{8}{5}\times 2^{5}+\frac{16}{3}\times 2^{3}-\left(\frac{0^{7}}{7}-\frac{8}{5}\times 0^{5}+\frac{16}{3}\times 0^{3}\right)
నిశ్చితమైన అనుకలము అనేది అనుకలము యొక్క ఎగువ పరిమితితో మూల్యాంకనం చేయబడిన సూత్రీకరణ యొక్క ప్రతి-వ్యుత్పన్నము నుండి అనుకలము యొక్క దిగువ పరిమితితో మూల్యాంకనం చేయబడిన ప్రతి-వ్యుత్పన్నమును వ్యవకలనము చేసిన మొత్తంతో సమానం.
\frac{1024}{105}
సరళీకృతం చేయండి.