మూల్యాంకనం చేయండి
\frac{10}{9}\approx 1.111111111
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\int \frac{1}{x^{2}}-\frac{1}{x^{3}}\mathrm{d}x
అనిశ్చితమైన పూర్ణాంక ప్రమేయాన్ని మూల్యాంకనం చేయండి.
\int \frac{1}{x^{2}}\mathrm{d}x+\int -\frac{1}{x^{3}}\mathrm{d}x
మొత్తం పదాన్ని పదం ద్వారా సమగ్రపరచండి.
\int \frac{1}{x^{2}}\mathrm{d}x-\int \frac{1}{x^{3}}\mathrm{d}x
ప్రతి పదంలో స్థిరాంకం లబ్దమూలాన్ని తీసివేయి.
-\frac{1}{x}-\int \frac{1}{x^{3}}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int \frac{1}{x^{2}}\mathrm{d}x ను -\frac{1}{x}తో భర్తీ చేయండి.
-\frac{1}{x}+\frac{1}{2x^{2}}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int \frac{1}{x^{3}}\mathrm{d}x ను -\frac{1}{2x^{2}}తో భర్తీ చేయండి. -1 సార్లు -\frac{1}{2x^{2}}ని గుణించండి.
\frac{\frac{1}{2}-x}{x^{2}}
సరళీకృతం చేయండి.
\left(\frac{1}{2}-\left(-1\right)\right)\left(-1\right)^{-2}-\left(\frac{1}{2}-\left(-3\right)\right)\left(-3\right)^{-2}
నిశ్చితమైన అనుకలము అనేది అనుకలము యొక్క ఎగువ పరిమితితో మూల్యాంకనం చేయబడిన సూత్రీకరణ యొక్క ప్రతి-వ్యుత్పన్నము నుండి అనుకలము యొక్క దిగువ పరిమితితో మూల్యాంకనం చేయబడిన ప్రతి-వ్యుత్పన్నమును వ్యవకలనము చేసిన మొత్తంతో సమానం.
\frac{10}{9}
సరళీకృతం చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}