మూల్యాంకనం చేయండి
-\frac{146541311677}{1500}\approx -97694207.784666667
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\int _{-0.15}^{665}-x^{2}+2x+1-\frac{1}{2}x\mathrm{d}x
-1+\frac{1}{2}x యొక్క వ్యతిరేకాన్ని కనుగొనాలంటే, ప్రతి పదం యొక్క వ్యతిరేకాన్ని కనుగొనండి.
\int _{-0.15}^{665}-x^{2}+\frac{3}{2}x+1\mathrm{d}x
\frac{3}{2}xని పొందడం కోసం 2x మరియు -\frac{1}{2}xని జత చేయండి.
\int -x^{2}+\frac{3x}{2}+1\mathrm{d}x
అనిశ్చితమైన పూర్ణాంక ప్రమేయాన్ని మూల్యాంకనం చేయండి.
\int -x^{2}\mathrm{d}x+\int \frac{3x}{2}\mathrm{d}x+\int 1\mathrm{d}x
మొత్తం పదాన్ని పదం ద్వారా సమగ్రపరచండి.
-\int x^{2}\mathrm{d}x+\frac{3\int x\mathrm{d}x}{2}+\int 1\mathrm{d}x
ప్రతి పదంలో స్థిరాంకం లబ్దమూలాన్ని తీసివేయి.
-\frac{x^{3}}{3}+\frac{3\int x\mathrm{d}x}{2}+\int 1\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x^{2}\mathrm{d}x ను \frac{x^{3}}{3}తో భర్తీ చేయండి. -1 సార్లు \frac{x^{3}}{3}ని గుణించండి.
-\frac{x^{3}}{3}+\frac{3x^{2}}{4}+\int 1\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x\mathrm{d}x ను \frac{x^{2}}{2}తో భర్తీ చేయండి. \frac{3}{2} సార్లు \frac{x^{2}}{2}ని గుణించండి.
-\frac{x^{3}}{3}+\frac{3x^{2}}{4}+x
సాధారణ సమగ్ర నియమం \int a\mathrm{d}x=axయొక్క పట్టికను ఉపయోగించి 1యొక్క పూర్ణాంకమను కనుగొనండి.
-\frac{665^{3}}{3}+\frac{3}{4}\times 665^{2}+665-\left(-\frac{\left(-0.15\right)^{3}}{3}+\frac{3}{4}\left(-0.15\right)^{2}-0.15\right)
నిశ్చితమైన అనుకలము అనేది అనుకలము యొక్క ఎగువ పరిమితితో మూల్యాంకనం చేయబడిన సూత్రీకరణ యొక్క ప్రతి-వ్యుత్పన్నము నుండి అనుకలము యొక్క దిగువ పరిమితితో మూల్యాంకనం చేయబడిన ప్రతి-వ్యుత్పన్నమును వ్యవకలనము చేసిన మొత్తంతో సమానం.
-\frac{146541311677}{1500}
సరళీకృతం చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}