మూల్యాంకనం చేయండి
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+4x^{2}-9x+С
x ఆధారంగా వేరు పరచండి
\left(2x-1\right)\left(x+1\right)\left(x+9\right)
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\int \left(2x^{2}-x+2x-1\right)\left(x+9\right)\mathrm{d}x
x+1లోని ప్రతి పదాన్ని 2x-1లోని ప్రతి పదంతో గుణించడం ద్వారా పంపిణీ లక్షణాన్ని వర్తింపజేయండి.
\int \left(2x^{2}+x-1\right)\left(x+9\right)\mathrm{d}x
xని పొందడం కోసం -x మరియు 2xని జత చేయండి.
\int 2x^{3}+18x^{2}+x^{2}+9x-x-9\mathrm{d}x
2x^{2}+x-1లోని ప్రతి పదాన్ని x+9లోని ప్రతి పదంతో గుణించడం ద్వారా పంపిణీ లక్షణాన్ని వర్తింపజేయండి.
\int 2x^{3}+19x^{2}+9x-x-9\mathrm{d}x
19x^{2}ని పొందడం కోసం 18x^{2} మరియు x^{2}ని జత చేయండి.
\int 2x^{3}+19x^{2}+8x-9\mathrm{d}x
8xని పొందడం కోసం 9x మరియు -xని జత చేయండి.
\int 2x^{3}\mathrm{d}x+\int 19x^{2}\mathrm{d}x+\int 8x\mathrm{d}x+\int -9\mathrm{d}x
మొత్తం పదాన్ని పదం ద్వారా సమగ్రపరచండి.
2\int x^{3}\mathrm{d}x+19\int x^{2}\mathrm{d}x+8\int x\mathrm{d}x+\int -9\mathrm{d}x
ప్రతి పదంలో స్థిరాంకం లబ్దమూలాన్ని తీసివేయి.
\frac{x^{4}}{2}+19\int x^{2}\mathrm{d}x+8\int x\mathrm{d}x+\int -9\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x^{3}\mathrm{d}x ను \frac{x^{4}}{4}తో భర్తీ చేయండి. 2 సార్లు \frac{x^{4}}{4}ని గుణించండి.
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+8\int x\mathrm{d}x+\int -9\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x^{2}\mathrm{d}x ను \frac{x^{3}}{3}తో భర్తీ చేయండి. 19 సార్లు \frac{x^{3}}{3}ని గుణించండి.
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+4x^{2}+\int -9\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x\mathrm{d}x ను \frac{x^{2}}{2}తో భర్తీ చేయండి. 8 సార్లు \frac{x^{2}}{2}ని గుణించండి.
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+4x^{2}-9x
సాధారణ సమగ్ర నియమం \int a\mathrm{d}x=axయొక్క పట్టికను ఉపయోగించి -9యొక్క పూర్ణాంకమను కనుగొనండి.
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+4x^{2}-9x+С
f\left(x\right)యొక్క యాంటీడిరివేటివ్ F\left(x\right)అయితే, అప్పుడు f\left(x\right)యొక్క అన్ని యాంటీడిరివేటివ్స్ సమితి F\left(x\right)+C ద్వారా ఇవ్వబడుతుంది. అందువల్ల, ఫలితానికి ఏకీకరణ యొక్క స్థిరాంకం C\in \mathrm{R}ని జోడించండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}