xని పరిష్కరించండి
x = \frac{9}{2} = 4\frac{1}{2} = 4.5
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
3x-12\left(\frac{2}{3}x-\left(\frac{1-x}{2}+1\right)\right)=9\left(1-x\right)
సమీకరణం రెండు వైపులా 12తో గుణించండి, కనిష్ట సామాన్య గుణిజము 4,3,2.
3x-12\left(\frac{2}{3}x-\frac{1-x}{2}-1\right)=9\left(1-x\right)
\frac{1-x}{2}+1 యొక్క వ్యతిరేకాన్ని కనుగొనాలంటే, ప్రతి పదం యొక్క వ్యతిరేకాన్ని కనుగొనండి.
3x-12\left(\frac{2}{3}x-\frac{1-x}{2}-1\right)=9-9x
1-xతో 9ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
3x-12\left(\frac{2}{3}x-\left(\frac{1}{2}-\frac{1}{2}x\right)-1\right)=9-9x
1-x యొక్క ప్రతి విలువని 2తో భాగించడం ద్వారా \frac{1}{2}-\frac{1}{2}xని పొందండి.
3x-12\left(\frac{2}{3}x-\frac{1}{2}-\left(-\frac{1}{2}x\right)-1\right)=9-9x
\frac{1}{2}-\frac{1}{2}x యొక్క వ్యతిరేకాన్ని కనుగొనాలంటే, ప్రతి పదం యొక్క వ్యతిరేకాన్ని కనుగొనండి.
3x-12\left(\frac{2}{3}x-\frac{1}{2}+\frac{1}{2}x-1\right)=9-9x
-\frac{1}{2}x సంఖ్య యొక్క వ్యతిరేకం \frac{1}{2}x.
3x-12\left(\frac{7}{6}x-\frac{1}{2}-1\right)=9-9x
\frac{7}{6}xని పొందడం కోసం \frac{2}{3}x మరియు \frac{1}{2}xని జత చేయండి.
3x-12\left(\frac{7}{6}x-\frac{1}{2}-\frac{2}{2}\right)=9-9x
1ని భిన్నం \frac{2}{2} వలె మార్పిడి చేయండి.
3x-12\left(\frac{7}{6}x+\frac{-1-2}{2}\right)=9-9x
-\frac{1}{2} మరియు \frac{2}{2} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను వ్యవకలనం చేయడం ద్వారా వాటిని వ్యవకలనం చేయండి.
3x-12\left(\frac{7}{6}x-\frac{3}{2}\right)=9-9x
-3ని పొందడం కోసం 2ని -1 నుండి వ్యవకలనం చేయండి.
3x-12\times \frac{7}{6}x-12\left(-\frac{3}{2}\right)=9-9x
\frac{7}{6}x-\frac{3}{2}తో -12ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
3x+\frac{-12\times 7}{6}x-12\left(-\frac{3}{2}\right)=9-9x
-12\times \frac{7}{6}ని ఏక భిన్నం వలె వ్యక్తీకరించండి.
3x+\frac{-84}{6}x-12\left(-\frac{3}{2}\right)=9-9x
-84ని పొందడం కోసం -12 మరియు 7ని గుణించండి.
3x-14x-12\left(-\frac{3}{2}\right)=9-9x
-84ని 6తో భాగించి -14ని పొందండి.
3x-14x+\frac{-12\left(-3\right)}{2}=9-9x
-12\left(-\frac{3}{2}\right)ని ఏక భిన్నం వలె వ్యక్తీకరించండి.
3x-14x+\frac{36}{2}=9-9x
36ని పొందడం కోసం -12 మరియు -3ని గుణించండి.
3x-14x+18=9-9x
36ని 2తో భాగించి 18ని పొందండి.
-11x+18=9-9x
-11xని పొందడం కోసం 3x మరియు -14xని జత చేయండి.
-11x+18+9x=9
రెండు వైపులా 9xని జోడించండి.
-2x+18=9
-2xని పొందడం కోసం -11x మరియు 9xని జత చేయండి.
-2x=9-18
రెండు భాగాల నుండి 18ని వ్యవకలనం చేయండి.
-2x=-9
-9ని పొందడం కోసం 18ని 9 నుండి వ్యవకలనం చేయండి.
x=\frac{-9}{-2}
రెండు వైపులా -2తో భాగించండి.
x=\frac{9}{2}
లవం మరియు హారం రెండింటి నుండి రుణాత్మక సంకేతాన్ని తీసివేయడం ద్వారా \frac{-9}{-2} భిన్నమును \frac{9}{2} విధంగా సరళీకృతం చేయవచ్చు.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}