మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి (సంకీర్ణ పరిష్కారం)
Tick mark Image
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

xx^{2}=10\times 100
సున్నాతో భాగించడం సాధ్యం కాదు కనుక వేరియబుల్ x అన్నది 0కి సమానంగా ఉండకూడదు. సమీకరణం రెండు వైపులా 10xతో గుణించండి, కనిష్ట సామాన్య గుణిజము 10,x.
x^{3}=10\times 100
ఒకే పీఠము యొక్క ఘాతములను భాగించడం కోసం, వాటి ఘాతాంకములను జోడించండి. 1కి 2ని జోడించి 3 పొందండి.
x^{3}=1000
1000ని పొందడం కోసం 10 మరియు 100ని గుణించండి.
x^{3}-1000=0
రెండు భాగాల నుండి 1000ని వ్యవకలనం చేయండి.
±1000,±500,±250,±200,±125,±100,±50,±40,±25,±20,±10,±8,±5,±4,±2,±1
పరిమేయ మూల సిద్ధాంతం ప్రకారం, పాలీనామియల్ యొక్క అన్ని రేషనల్ రూట్‌లు రూపంలో \frac{p}{q} ఉండాలి, ఇందులో p అనేది కాన్‌స్టంట్ టర్మ్ -1000ని భాగిస్తుంది మరియు q అనేది లీడింగ్ కోఎఫిషియంట్ 1ని భాగిస్తుంది. మొత్తం క్యాండిడేట్‌లను \frac{p}{q} జాబితా చేయండి.
x=10
అత్యంత చిన్న విలువ నుండి ఖచ్చితమైన విలువ వరకు, అన్ని పూర్ణాంకం విలువలను ప్రయత్నించడం ద్వారా అటువంటి ఒక రూట్‌ను కనుగొనండి. పూర్ణాంకం రూట్‌లు కనుగొనబడకుంటే, ఫ్రాక్షన్‌లను ప్రయత్నించండి.
x^{2}+10x+100=0
ఫ్యాక్టర్ సిద్ధాంతం ప్రకారం, x-k అనేది ప్రతి రూట్ k యొక్క పాలీనామియల్‌కు ఒక ఫ్యాక్టర్. x^{3}-1000ని x-10తో భాగించి x^{2}+10x+100ని పొందండి. ఫలితం మరియు 0 సమానంగా ఉన్నప్పుడు ఎక్స్‌ప్రెషన్‌ను పరిష్కరించండి.
x=\frac{-10±\sqrt{10^{2}-4\times 1\times 100}}{2}
ax^{2}+bx+c=0 ఫారమ్ యొక్క అన్ని సమీకరణాలను దిగువ క్వాడ్రాటిక్ సూత్రాన్ని ఉపయోగించి పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. క్వాడ్రాటిక్ సూత్రంలో 1 స్థానంలో a, 10 స్థానంలో b 100 స్థానంలో c ఉంచండి.
x=\frac{-10±\sqrt{-300}}{2}
లెక్కలు చేయండి.
x=-5i\sqrt{3}-5 x=-5+5i\sqrt{3}
± ప్లస్ మరియు ± మైనస్ అయినప్పుడు సమీకరణం x^{2}+10x+100=0ని పరిష్కరించండి.
x=10 x=-5i\sqrt{3}-5 x=-5+5i\sqrt{3}
కనుగొన్న అన్ని పరిష్కారాలను జాబితా చేయండి.
xx^{2}=10\times 100
సున్నాతో భాగించడం సాధ్యం కాదు కనుక వేరియబుల్ x అన్నది 0కి సమానంగా ఉండకూడదు. సమీకరణం రెండు వైపులా 10xతో గుణించండి, కనిష్ట సామాన్య గుణిజము 10,x.
x^{3}=10\times 100
ఒకే పీఠము యొక్క ఘాతములను భాగించడం కోసం, వాటి ఘాతాంకములను జోడించండి. 1కి 2ని జోడించి 3 పొందండి.
x^{3}=1000
1000ని పొందడం కోసం 10 మరియు 100ని గుణించండి.
x^{3}-1000=0
రెండు భాగాల నుండి 1000ని వ్యవకలనం చేయండి.
±1000,±500,±250,±200,±125,±100,±50,±40,±25,±20,±10,±8,±5,±4,±2,±1
పరిమేయ మూల సిద్ధాంతం ప్రకారం, పాలీనామియల్ యొక్క అన్ని రేషనల్ రూట్‌లు రూపంలో \frac{p}{q} ఉండాలి, ఇందులో p అనేది కాన్‌స్టంట్ టర్మ్ -1000ని భాగిస్తుంది మరియు q అనేది లీడింగ్ కోఎఫిషియంట్ 1ని భాగిస్తుంది. మొత్తం క్యాండిడేట్‌లను \frac{p}{q} జాబితా చేయండి.
x=10
అత్యంత చిన్న విలువ నుండి ఖచ్చితమైన విలువ వరకు, అన్ని పూర్ణాంకం విలువలను ప్రయత్నించడం ద్వారా అటువంటి ఒక రూట్‌ను కనుగొనండి. పూర్ణాంకం రూట్‌లు కనుగొనబడకుంటే, ఫ్రాక్షన్‌లను ప్రయత్నించండి.
x^{2}+10x+100=0
ఫ్యాక్టర్ సిద్ధాంతం ప్రకారం, x-k అనేది ప్రతి రూట్ k యొక్క పాలీనామియల్‌కు ఒక ఫ్యాక్టర్. x^{3}-1000ని x-10తో భాగించి x^{2}+10x+100ని పొందండి. ఫలితం మరియు 0 సమానంగా ఉన్నప్పుడు ఎక్స్‌ప్రెషన్‌ను పరిష్కరించండి.
x=\frac{-10±\sqrt{10^{2}-4\times 1\times 100}}{2}
ax^{2}+bx+c=0 ఫారమ్ యొక్క అన్ని సమీకరణాలను దిగువ క్వాడ్రాటిక్ సూత్రాన్ని ఉపయోగించి పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. క్వాడ్రాటిక్ సూత్రంలో 1 స్థానంలో a, 10 స్థానంలో b 100 స్థానంలో c ఉంచండి.
x=\frac{-10±\sqrt{-300}}{2}
లెక్కలు చేయండి.
x\in \emptyset
రియల్ ఫీల్డ్‌లో రుణాత్మక సంఖ్య యొక్క వర్గమూలం నిర్వచించబడలేదు కనుక పరిష్కారాలు లేవు.
x=10
కనుగొన్న అన్ని పరిష్కారాలను జాబితా చేయండి.