మూల్యాంకనం చేయండి
\frac{34-x}{7\left(x+1\right)}
x ఆధారంగా వేరు పరచండి
-\frac{5}{\left(x+1\right)^{2}}
గ్రాఫ్
క్విజ్
Polynomial
దీని మాదిరిగా 5 ప్రాబ్లెమ్లు ఉన్నాయి:
\frac { 5 } { ( x + 1 ) } - \frac { 2 } { 17 - 3 }
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\frac{5}{x+1}-\frac{2}{14}
14ని పొందడం కోసం 3ని 17 నుండి వ్యవకలనం చేయండి.
\frac{5}{x+1}-\frac{1}{7}
2ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{2}{14} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
\frac{5\times 7}{7\left(x+1\right)}-\frac{x+1}{7\left(x+1\right)}
వ్యక్తీకరణలను జోడించడానికి లేదా వ్యవకలనం చేయడానికి, వాటి హద్దులను ఒకే విధంగా చేయడానికి వాటిని విస్తరించండి. x+1 మరియు 7 యొక్క కనిష్ట సామాన్య గుణిజం 7\left(x+1\right). \frac{5}{x+1} సార్లు \frac{7}{7}ని గుణించండి. \frac{1}{7} సార్లు \frac{x+1}{x+1}ని గుణించండి.
\frac{5\times 7-\left(x+1\right)}{7\left(x+1\right)}
\frac{5\times 7}{7\left(x+1\right)} మరియు \frac{x+1}{7\left(x+1\right)} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను వ్యవకలనం చేయడం ద్వారా వాటిని వ్యవకలనం చేయండి.
\frac{35-x-1}{7\left(x+1\right)}
5\times 7-\left(x+1\right)లో గుణాకారాలు చేయండి.
\frac{34-x}{7\left(x+1\right)}
35-x-1లోని పదాల వలె జత చేయండి.
\frac{34-x}{7x+7}
7\left(x+1\right)ని విస్తరించండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{x+1}-\frac{2}{14})
14ని పొందడం కోసం 3ని 17 నుండి వ్యవకలనం చేయండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{x+1}-\frac{1}{7})
2ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{2}{14} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\times 7}{7\left(x+1\right)}-\frac{x+1}{7\left(x+1\right)})
వ్యక్తీకరణలను జోడించడానికి లేదా వ్యవకలనం చేయడానికి, వాటి హద్దులను ఒకే విధంగా చేయడానికి వాటిని విస్తరించండి. x+1 మరియు 7 యొక్క కనిష్ట సామాన్య గుణిజం 7\left(x+1\right). \frac{5}{x+1} సార్లు \frac{7}{7}ని గుణించండి. \frac{1}{7} సార్లు \frac{x+1}{x+1}ని గుణించండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\times 7-\left(x+1\right)}{7\left(x+1\right)})
\frac{5\times 7}{7\left(x+1\right)} మరియు \frac{x+1}{7\left(x+1\right)} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను వ్యవకలనం చేయడం ద్వారా వాటిని వ్యవకలనం చేయండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{35-x-1}{7\left(x+1\right)})
5\times 7-\left(x+1\right)లో గుణాకారాలు చేయండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{34-x}{7\left(x+1\right)})
35-x-1లోని పదాల వలె జత చేయండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{34-x}{7x+7})
x+1తో 7ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
\frac{\left(7x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+34)-\left(-x^{1}+34\right)\frac{\mathrm{d}}{\mathrm{d}x}(7x^{1}+7)}{\left(7x^{1}+7\right)^{2}}
ఏవైనా రెండు అవకలనీయ ఫలముల కోసం, రెండు ఫలముల యొక్క భాగాహారలబ్ధము యొక్క వ్యుత్పన్నము అనేది లవము యొక్క వ్యుత్పన్నమును హారముసార్లు గుణించిన దాని నుండి హారము యొక్క వ్యుత్పన్నమును లవముసార్లు గుణించిన తర్వాత హారము వర్గాన్ని మొత్తంగా భాగించిన దానితో సమానం.
\frac{\left(7x^{1}+7\right)\left(-1\right)x^{1-1}-\left(-x^{1}+34\right)\times 7x^{1-1}}{\left(7x^{1}+7\right)^{2}}
బహుపదం యొక్క వ్యుత్పన్నం అనేది దాని రాశుల యొక్క వ్యుత్పన్నముల మొత్తం. ఏ రాశి యొక్క వ్యుత్పన్నం అయినా 0. nax^{n-1} యొక్క వ్యుత్పన్నం ax^{n}.
\frac{\left(7x^{1}+7\right)\left(-1\right)x^{0}-\left(-x^{1}+34\right)\times 7x^{0}}{\left(7x^{1}+7\right)^{2}}
అంకగణితము చేయండి.
\frac{7x^{1}\left(-1\right)x^{0}+7\left(-1\right)x^{0}-\left(-x^{1}\times 7x^{0}+34\times 7x^{0}\right)}{\left(7x^{1}+7\right)^{2}}
విభాగ న్యాయమును ఉపయోగించి విస్తరించండి.
\frac{7\left(-1\right)x^{1}+7\left(-1\right)x^{0}-\left(-7x^{1}+34\times 7x^{0}\right)}{\left(7x^{1}+7\right)^{2}}
ఒకే పీఠము యొక్క ఘాతములను గుణించడం కోసం వాటి ఘాతాంకాలను కూడండి.
\frac{-7x^{1}-7x^{0}-\left(-7x^{1}+238x^{0}\right)}{\left(7x^{1}+7\right)^{2}}
అంకగణితము చేయండి.
\frac{-7x^{1}-7x^{0}-\left(-7x^{1}\right)-238x^{0}}{\left(7x^{1}+7\right)^{2}}
అనవసర కుండలీకరణములను తీసివేయండి.
\frac{\left(-7-\left(-7\right)\right)x^{1}+\left(-7-238\right)x^{0}}{\left(7x^{1}+7\right)^{2}}
ఒకే రకమైన పదాలను జత చేయండి.
\frac{-245x^{0}}{\left(7x^{1}+7\right)^{2}}
-7ని -7 నుండి మరియు 238ని -7 నుండి వ్యవకలనం చేయండి.
\frac{-245x^{0}}{\left(7x+7\right)^{2}}
ఏ విలువకు అయినా t, t^{1}=t.
\frac{-245}{\left(7x+7\right)^{2}}
0కి మినహా ఏ విలువకు అయినా t, t^{0}=1.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}