మెయిన్ కంటెంట్ కు వెళ్లండి
మూల్యాంకనం చేయండి
Tick mark Image
r ఆధారంగా వేరు పరచండి
Tick mark Image

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

\frac{4\left(5r-2\right)}{\left(5r-2\right)\left(2r+5\right)}+\frac{3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)}
వ్యక్తీకరణలను జోడించడానికి లేదా వ్యవకలనం చేయడానికి, వాటి హద్దులను ఒకే విధంగా చేయడానికి వాటిని విస్తరించండి. 2r+5 మరియు 5r-2 యొక్క కనిష్ట సామాన్య గుణిజం \left(5r-2\right)\left(2r+5\right). \frac{4}{2r+5} సార్లు \frac{5r-2}{5r-2}ని గుణించండి. \frac{3}{5r-2} సార్లు \frac{2r+5}{2r+5}ని గుణించండి.
\frac{4\left(5r-2\right)+3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)}
\frac{4\left(5r-2\right)}{\left(5r-2\right)\left(2r+5\right)} మరియు \frac{3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను కూడటం ద్వారా వాటిని కూడండి.
\frac{20r-8+6r+15}{\left(5r-2\right)\left(2r+5\right)}
4\left(5r-2\right)+3\left(2r+5\right)లో గుణాకారాలు చేయండి.
\frac{26r+7}{\left(5r-2\right)\left(2r+5\right)}
20r-8+6r+15లోని పదాల వలె జత చేయండి.
\frac{26r+7}{10r^{2}+21r-10}
\left(5r-2\right)\left(2r+5\right)ని విస్తరించండి.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{4\left(5r-2\right)}{\left(5r-2\right)\left(2r+5\right)}+\frac{3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)})
వ్యక్తీకరణలను జోడించడానికి లేదా వ్యవకలనం చేయడానికి, వాటి హద్దులను ఒకే విధంగా చేయడానికి వాటిని విస్తరించండి. 2r+5 మరియు 5r-2 యొక్క కనిష్ట సామాన్య గుణిజం \left(5r-2\right)\left(2r+5\right). \frac{4}{2r+5} సార్లు \frac{5r-2}{5r-2}ని గుణించండి. \frac{3}{5r-2} సార్లు \frac{2r+5}{2r+5}ని గుణించండి.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{4\left(5r-2\right)+3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)})
\frac{4\left(5r-2\right)}{\left(5r-2\right)\left(2r+5\right)} మరియు \frac{3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను కూడటం ద్వారా వాటిని కూడండి.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{20r-8+6r+15}{\left(5r-2\right)\left(2r+5\right)})
4\left(5r-2\right)+3\left(2r+5\right)లో గుణాకారాలు చేయండి.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{26r+7}{\left(5r-2\right)\left(2r+5\right)})
20r-8+6r+15లోని పదాల వలె జత చేయండి.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{26r+7}{10r^{2}+25r-4r-10})
5r-2లోని ప్రతి పదాన్ని 2r+5లోని ప్రతి పదంతో గుణించడం ద్వారా పంపిణీ లక్షణాన్ని వర్తింపజేయండి.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{26r+7}{10r^{2}+21r-10})
21rని పొందడం కోసం 25r మరియు -4rని జత చేయండి.
\frac{\left(10r^{2}+21r^{1}-10\right)\frac{\mathrm{d}}{\mathrm{d}r}(26r^{1}+7)-\left(26r^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}r}(10r^{2}+21r^{1}-10)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
ఏవైనా రెండు అవకలనీయ ఫలముల కోసం, రెండు ఫలముల యొక్క భాగాహారలబ్ధము యొక్క వ్యుత్పన్నము అనేది లవము యొక్క వ్యుత్పన్నమును హారముసార్లు గుణించిన దాని నుండి హారము యొక్క వ్యుత్పన్నమును లవముసార్లు గుణించిన తర్వాత హారము వర్గాన్ని మొత్తంగా భాగించిన దానితో సమానం.
\frac{\left(10r^{2}+21r^{1}-10\right)\times 26r^{1-1}-\left(26r^{1}+7\right)\left(2\times 10r^{2-1}+21r^{1-1}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
బహుపదం యొక్క వ్యుత్పన్నం అనేది దాని రాశుల యొక్క వ్యుత్పన్నముల మొత్తం. ఏ రాశి యొక్క వ్యుత్పన్నం అయినా 0. nax^{n-1} యొక్క వ్యుత్పన్నం ax^{n}.
\frac{\left(10r^{2}+21r^{1}-10\right)\times 26r^{0}-\left(26r^{1}+7\right)\left(20r^{1}+21r^{0}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
సరళీకృతం చేయండి.
\frac{10r^{2}\times 26r^{0}+21r^{1}\times 26r^{0}-10\times 26r^{0}-\left(26r^{1}+7\right)\left(20r^{1}+21r^{0}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
10r^{2}+21r^{1}-10 సార్లు 26r^{0}ని గుణించండి.
\frac{10r^{2}\times 26r^{0}+21r^{1}\times 26r^{0}-10\times 26r^{0}-\left(26r^{1}\times 20r^{1}+26r^{1}\times 21r^{0}+7\times 20r^{1}+7\times 21r^{0}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
26r^{1}+7 సార్లు 20r^{1}+21r^{0}ని గుణించండి.
\frac{10\times 26r^{2}+21\times 26r^{1}-10\times 26r^{0}-\left(26\times 20r^{1+1}+26\times 21r^{1}+7\times 20r^{1}+7\times 21r^{0}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
ఒకే పీఠము యొక్క ఘాతములను గుణించడం కోసం వాటి ఘాతాంకాలను కూడండి.
\frac{260r^{2}+546r^{1}-260r^{0}-\left(520r^{2}+546r^{1}+140r^{1}+147r^{0}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
సరళీకృతం చేయండి.
\frac{-260r^{2}-140r^{1}-407r^{0}}{\left(10r^{2}+21r^{1}-10\right)^{2}}
ఒకే రకమైన పదాలను జత చేయండి.
\frac{-260r^{2}-140r-407r^{0}}{\left(10r^{2}+21r-10\right)^{2}}
ఏ విలువకు అయినా t, t^{1}=t.
\frac{-260r^{2}-140r-407}{\left(10r^{2}+21r-10\right)^{2}}
0కి మినహా ఏ విలువకు అయినా t, t^{0}=1.