మూల్యాంకనం చేయండి
\frac{3\left(\alpha ^{2}+\alpha +\beta ^{2}+\beta \right)}{\left(\alpha +1\right)\left(\beta +1\right)}
లబ్ధమూలము
\frac{3\left(\alpha ^{2}+\alpha +\beta ^{2}+\beta \right)}{\left(\alpha +1\right)\left(\beta +1\right)}
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\frac{3\beta \left(\beta +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}+\frac{3\alpha \left(\alpha +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}
వ్యక్తీకరణలను జోడించడానికి లేదా వ్యవకలనం చేయడానికి, వాటి హద్దులను ఒకే విధంగా చేయడానికి వాటిని విస్తరించండి. \alpha +1 మరియు \beta +1 యొక్క కనిష్ట సామాన్య గుణిజం \left(\alpha +1\right)\left(\beta +1\right). \frac{3\beta }{\alpha +1} సార్లు \frac{\beta +1}{\beta +1}ని గుణించండి. \frac{3\alpha }{\beta +1} సార్లు \frac{\alpha +1}{\alpha +1}ని గుణించండి.
\frac{3\beta \left(\beta +1\right)+3\alpha \left(\alpha +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}
\frac{3\beta \left(\beta +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)} మరియు \frac{3\alpha \left(\alpha +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను కూడటం ద్వారా వాటిని కూడండి.
\frac{3\beta ^{2}+3\beta +3\alpha ^{2}+3\alpha }{\left(\alpha +1\right)\left(\beta +1\right)}
3\beta \left(\beta +1\right)+3\alpha \left(\alpha +1\right)లో గుణాకారాలు చేయండి.
\frac{3\beta ^{2}+3\beta +3\alpha ^{2}+3\alpha }{\alpha \beta +\alpha +\beta +1}
\left(\alpha +1\right)\left(\beta +1\right)ని విస్తరించండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}