మూల్యాంకనం చేయండి
6\sqrt{2}\approx 8.485281374
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\frac{\left(12+6\sqrt{2}\right)\left(1-\sqrt{2}\right)}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}
లవం, హారాన్ని 1-\sqrt{2}తో గుణించడం ద్వారా \frac{12+6\sqrt{2}}{1+\sqrt{2}} యొక్క హారాన్ని రేషనలైజ్ చేయండి.
\frac{\left(12+6\sqrt{2}\right)\left(1-\sqrt{2}\right)}{1^{2}-\left(\sqrt{2}\right)^{2}}
\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)ని పరిగణించండి. ఈ నియమాన్ని ఉపయోగించి గుణకారాన్ని చతరుస్రాల మధ్య తేడా వలె మార్చండి: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(12+6\sqrt{2}\right)\left(1-\sqrt{2}\right)}{1-2}
1 వర్గము. \sqrt{2} వర్గము.
\frac{\left(12+6\sqrt{2}\right)\left(1-\sqrt{2}\right)}{-1}
-1ని పొందడం కోసం 2ని 1 నుండి వ్యవకలనం చేయండి.
-\left(12+6\sqrt{2}\right)\left(1-\sqrt{2}\right)
దేనినైనా -1తో భాగించినప్పుడు దాని వ్యతిరేకం వస్తుంది.
-\left(12-12\sqrt{2}+6\sqrt{2}-6\left(\sqrt{2}\right)^{2}\right)
12+6\sqrt{2}లోని ప్రతి పదాన్ని 1-\sqrt{2}లోని ప్రతి పదంతో గుణించడం ద్వారా పంపిణీ లక్షణాన్ని వర్తింపజేయండి.
-\left(12-6\sqrt{2}-6\left(\sqrt{2}\right)^{2}\right)
-6\sqrt{2}ని పొందడం కోసం -12\sqrt{2} మరియు 6\sqrt{2}ని జత చేయండి.
-\left(12-6\sqrt{2}-6\times 2\right)
\sqrt{2} యొక్క స్క్వేర్ 2.
-\left(12-6\sqrt{2}-12\right)
-12ని పొందడం కోసం -6 మరియు 2ని గుణించండి.
-\left(-6\sqrt{2}\right)
0ని పొందడం కోసం 12ని 12 నుండి వ్యవకలనం చేయండి.
6\sqrt{2}
-6\sqrt{2} సంఖ్య యొక్క వ్యతిరేకం 6\sqrt{2}.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}