మెయిన్ కంటెంట్ కు వెళ్లండి
మూల్యాంకనం చేయండి
Tick mark Image
x ఆధారంగా వేరు పరచండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

\frac{10}{x-3}-\frac{3\left(x-3\right)}{x-3}
వ్యక్తీకరణలను జోడించడానికి లేదా వ్యవకలనం చేయడానికి, వాటి హద్దులను ఒకే విధంగా చేయడానికి వాటిని విస్తరించండి. 3 సార్లు \frac{x-3}{x-3}ని గుణించండి.
\frac{10-3\left(x-3\right)}{x-3}
\frac{10}{x-3} మరియు \frac{3\left(x-3\right)}{x-3} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను వ్యవకలనం చేయడం ద్వారా వాటిని వ్యవకలనం చేయండి.
\frac{10-3x+9}{x-3}
10-3\left(x-3\right)లో గుణాకారాలు చేయండి.
\frac{19-3x}{x-3}
10-3x+9లోని పదాల వలె జత చేయండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10}{x-3}-\frac{3\left(x-3\right)}{x-3})
వ్యక్తీకరణలను జోడించడానికి లేదా వ్యవకలనం చేయడానికి, వాటి హద్దులను ఒకే విధంగా చేయడానికి వాటిని విస్తరించండి. 3 సార్లు \frac{x-3}{x-3}ని గుణించండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10-3\left(x-3\right)}{x-3})
\frac{10}{x-3} మరియు \frac{3\left(x-3\right)}{x-3} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను వ్యవకలనం చేయడం ద్వారా వాటిని వ్యవకలనం చేయండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10-3x+9}{x-3})
10-3\left(x-3\right)లో గుణాకారాలు చేయండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{19-3x}{x-3})
10-3x+9లోని పదాల వలె జత చేయండి.
\frac{\left(x^{1}-3\right)\frac{\mathrm{d}}{\mathrm{d}x}(-3x^{1}+19)-\left(-3x^{1}+19\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-3)}{\left(x^{1}-3\right)^{2}}
ఏవైనా రెండు అవకలనీయ ఫలముల కోసం, రెండు ఫలముల యొక్క భాగాహారలబ్ధము యొక్క వ్యుత్పన్నము అనేది లవము యొక్క వ్యుత్పన్నమును హారముసార్లు గుణించిన దాని నుండి హారము యొక్క వ్యుత్పన్నమును లవముసార్లు గుణించిన తర్వాత హారము వర్గాన్ని మొత్తంగా భాగించిన దానితో సమానం.
\frac{\left(x^{1}-3\right)\left(-3\right)x^{1-1}-\left(-3x^{1}+19\right)x^{1-1}}{\left(x^{1}-3\right)^{2}}
బహుపదం యొక్క వ్యుత్పన్నం అనేది దాని రాశుల యొక్క వ్యుత్పన్నముల మొత్తం. ఏ రాశి యొక్క వ్యుత్పన్నం అయినా 0. nax^{n-1} యొక్క వ్యుత్పన్నం ax^{n}.
\frac{\left(x^{1}-3\right)\left(-3\right)x^{0}-\left(-3x^{1}+19\right)x^{0}}{\left(x^{1}-3\right)^{2}}
అంకగణితము చేయండి.
\frac{x^{1}\left(-3\right)x^{0}-3\left(-3\right)x^{0}-\left(-3x^{1}x^{0}+19x^{0}\right)}{\left(x^{1}-3\right)^{2}}
విభాగ న్యాయమును ఉపయోగించి విస్తరించండి.
\frac{-3x^{1}-3\left(-3\right)x^{0}-\left(-3x^{1}+19x^{0}\right)}{\left(x^{1}-3\right)^{2}}
ఒకే పీఠము యొక్క ఘాతములను గుణించడం కోసం వాటి ఘాతాంకాలను కూడండి.
\frac{-3x^{1}+9x^{0}-\left(-3x^{1}+19x^{0}\right)}{\left(x^{1}-3\right)^{2}}
అంకగణితము చేయండి.
\frac{-3x^{1}+9x^{0}-\left(-3x^{1}\right)-19x^{0}}{\left(x^{1}-3\right)^{2}}
అనవసర కుండలీకరణములను తీసివేయండి.
\frac{\left(-3-\left(-3\right)\right)x^{1}+\left(9-19\right)x^{0}}{\left(x^{1}-3\right)^{2}}
ఒకే రకమైన పదాలను జత చేయండి.
\frac{-10x^{0}}{\left(x^{1}-3\right)^{2}}
-3ని -3 నుండి మరియు 19ని 9 నుండి వ్యవకలనం చేయండి.
\frac{-10x^{0}}{\left(x-3\right)^{2}}
ఏ విలువకు అయినా t, t^{1}=t.
\frac{-10}{\left(x-3\right)^{2}}
0కి మినహా ఏ విలువకు అయినా t, t^{0}=1.