మూల్యాంకనం చేయండి
\frac{7-2x}{\left(x-2\right)\left(x+1\right)}
x ఆధారంగా వేరు పరచండి
\frac{2x^{2}-14x+11}{x^{4}-2x^{3}-3x^{2}+4x+4}
గ్రాఫ్
క్విజ్
Polynomial
దీని మాదిరిగా 5 ప్రాబ్లెమ్లు ఉన్నాయి:
\frac { 1 } { x - 2 } - \frac { 3 } { x + 1 }
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\frac{x+1}{\left(x-2\right)\left(x+1\right)}-\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
వ్యక్తీకరణలను జోడించడానికి లేదా వ్యవకలనం చేయడానికి, వాటి హద్దులను ఒకే విధంగా చేయడానికి వాటిని విస్తరించండి. x-2 మరియు x+1 యొక్క కనిష్ట సామాన్య గుణిజం \left(x-2\right)\left(x+1\right). \frac{1}{x-2} సార్లు \frac{x+1}{x+1}ని గుణించండి. \frac{3}{x+1} సార్లు \frac{x-2}{x-2}ని గుణించండి.
\frac{x+1-3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
\frac{x+1}{\left(x-2\right)\left(x+1\right)} మరియు \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను వ్యవకలనం చేయడం ద్వారా వాటిని వ్యవకలనం చేయండి.
\frac{x+1-3x+6}{\left(x-2\right)\left(x+1\right)}
x+1-3\left(x-2\right)లో గుణాకారాలు చేయండి.
\frac{-2x+7}{\left(x-2\right)\left(x+1\right)}
x+1-3x+6లోని పదాల వలె జత చేయండి.
\frac{-2x+7}{x^{2}-x-2}
\left(x-2\right)\left(x+1\right)ని విస్తరించండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1}{\left(x-2\right)\left(x+1\right)}-\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
వ్యక్తీకరణలను జోడించడానికి లేదా వ్యవకలనం చేయడానికి, వాటి హద్దులను ఒకే విధంగా చేయడానికి వాటిని విస్తరించండి. x-2 మరియు x+1 యొక్క కనిష్ట సామాన్య గుణిజం \left(x-2\right)\left(x+1\right). \frac{1}{x-2} సార్లు \frac{x+1}{x+1}ని గుణించండి. \frac{3}{x+1} సార్లు \frac{x-2}{x-2}ని గుణించండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1-3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
\frac{x+1}{\left(x-2\right)\left(x+1\right)} మరియు \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను వ్యవకలనం చేయడం ద్వారా వాటిని వ్యవకలనం చేయండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1-3x+6}{\left(x-2\right)\left(x+1\right)})
x+1-3\left(x-2\right)లో గుణాకారాలు చేయండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x+7}{\left(x-2\right)\left(x+1\right)})
x+1-3x+6లోని పదాల వలె జత చేయండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x+7}{x^{2}+x-2x-2})
x-2లోని ప్రతి పదాన్ని x+1లోని ప్రతి పదంతో గుణించడం ద్వారా పంపిణీ లక్షణాన్ని వర్తింపజేయండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x+7}{x^{2}-x-2})
-xని పొందడం కోసం x మరియు -2xని జత చేయండి.
\frac{\left(x^{2}-x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(-2x^{1}+7)-\left(-2x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-2)}{\left(x^{2}-x^{1}-2\right)^{2}}
ఏవైనా రెండు అవకలనీయ ఫలముల కోసం, రెండు ఫలముల యొక్క భాగాహారలబ్ధము యొక్క వ్యుత్పన్నము అనేది లవము యొక్క వ్యుత్పన్నమును హారముసార్లు గుణించిన దాని నుండి హారము యొక్క వ్యుత్పన్నమును లవముసార్లు గుణించిన తర్వాత హారము వర్గాన్ని మొత్తంగా భాగించిన దానితో సమానం.
\frac{\left(x^{2}-x^{1}-2\right)\left(-2\right)x^{1-1}-\left(-2x^{1}+7\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
బహుపదం యొక్క వ్యుత్పన్నం అనేది దాని రాశుల యొక్క వ్యుత్పన్నముల మొత్తం. ఏ రాశి యొక్క వ్యుత్పన్నం అయినా 0. nax^{n-1} యొక్క వ్యుత్పన్నం ax^{n}.
\frac{\left(x^{2}-x^{1}-2\right)\left(-2\right)x^{0}-\left(-2x^{1}+7\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
సరళీకృతం చేయండి.
\frac{x^{2}\left(-2\right)x^{0}-x^{1}\left(-2\right)x^{0}-2\left(-2\right)x^{0}-\left(-2x^{1}+7\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
x^{2}-x^{1}-2 సార్లు -2x^{0}ని గుణించండి.
\frac{x^{2}\left(-2\right)x^{0}-x^{1}\left(-2\right)x^{0}-2\left(-2\right)x^{0}-\left(-2x^{1}\times 2x^{1}-2x^{1}\left(-1\right)x^{0}+7\times 2x^{1}+7\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
-2x^{1}+7 సార్లు 2x^{1}-x^{0}ని గుణించండి.
\frac{-2x^{2}-\left(-2x^{1}\right)-2\left(-2\right)x^{0}-\left(-2\times 2x^{1+1}-2\left(-1\right)x^{1}+7\times 2x^{1}+7\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
ఒకే పీఠము యొక్క ఘాతములను గుణించడం కోసం వాటి ఘాతాంకాలను కూడండి.
\frac{-2x^{2}+2x^{1}+4x^{0}-\left(-4x^{2}+2x^{1}+14x^{1}-7x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
సరళీకృతం చేయండి.
\frac{2x^{2}-14x^{1}+11x^{0}}{\left(x^{2}-x^{1}-2\right)^{2}}
ఒకే రకమైన పదాలను జత చేయండి.
\frac{2x^{2}-14x+11x^{0}}{\left(x^{2}-x-2\right)^{2}}
ఏ విలువకు అయినా t, t^{1}=t.
\frac{2x^{2}-14x+11\times 1}{\left(x^{2}-x-2\right)^{2}}
0కి మినహా ఏ విలువకు అయినా t, t^{0}=1.
\frac{2x^{2}-14x+11}{\left(x^{2}-x-2\right)^{2}}
ఏ విలువకు అయినా t, t\times 1=t మరియు 1t=t.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}