మెయిన్ కంటెంట్ కు వెళ్లండి
మూల్యాంకనం చేయండి
Tick mark Image
x ఆధారంగా వేరు పరచండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

\frac{d}{x^{2}-2x+5}x
\frac{1}{x^{2}-2x+5}dని ఏక భిన్నం వలె వ్యక్తీకరించండి.
\frac{dx}{x^{2}-2x+5}
\frac{d}{x^{2}-2x+5}xని ఏక భిన్నం వలె వ్యక్తీకరించండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{d}{x^{2}-2x+5}x)
\frac{1}{x^{2}-2x+5}dని ఏక భిన్నం వలె వ్యక్తీకరించండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{dx}{x^{2}-2x+5})
\frac{d}{x^{2}-2x+5}xని ఏక భిన్నం వలె వ్యక్తీకరించండి.
\frac{\left(x^{2}-2x^{1}+5\right)\frac{\mathrm{d}}{\mathrm{d}x}(dx^{1})-dx^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x^{1}+5)}{\left(x^{2}-2x^{1}+5\right)^{2}}
ఏవైనా రెండు అవకలనీయ ఫలముల కోసం, రెండు ఫలముల యొక్క భాగాహారలబ్ధము యొక్క వ్యుత్పన్నము అనేది లవము యొక్క వ్యుత్పన్నమును హారముసార్లు గుణించిన దాని నుండి హారము యొక్క వ్యుత్పన్నమును లవముసార్లు గుణించిన తర్వాత హారము వర్గాన్ని మొత్తంగా భాగించిన దానితో సమానం.
\frac{\left(x^{2}-2x^{1}+5\right)dx^{1-1}-dx^{1}\left(2x^{2-1}-2x^{1-1}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
బహుపదం యొక్క వ్యుత్పన్నం అనేది దాని రాశుల యొక్క వ్యుత్పన్నముల మొత్తం. ఏ రాశి యొక్క వ్యుత్పన్నం అయినా 0. nax^{n-1} యొక్క వ్యుత్పన్నం ax^{n}.
\frac{\left(x^{2}-2x^{1}+5\right)dx^{0}-dx^{1}\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
సరళీకృతం చేయండి.
\frac{x^{2}dx^{0}-2x^{1}dx^{0}+5dx^{0}-dx^{1}\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
x^{2}-2x^{1}+5 సార్లు dx^{0}ని గుణించండి.
\frac{x^{2}dx^{0}-2x^{1}dx^{0}+5dx^{0}-\left(dx^{1}\times 2x^{1}+dx^{1}\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
dx^{1} సార్లు 2x^{1}-2x^{0}ని గుణించండి.
\frac{dx^{2}-2dx^{1}+5dx^{0}-\left(d\times 2x^{1+1}+d\left(-2\right)x^{1}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
ఒకే పీఠము యొక్క ఘాతములను గుణించడం కోసం వాటి ఘాతాంకాలను కూడండి.
\frac{dx^{2}+\left(-2d\right)x^{1}+5dx^{0}-\left(2dx^{2}+\left(-2d\right)x^{1}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
సరళీకృతం చేయండి.
\frac{\left(-d\right)x^{2}+5dx^{0}}{\left(x^{2}-2x^{1}+5\right)^{2}}
ఒకే రకమైన పదాలను జత చేయండి.
\frac{\left(-d\right)x^{2}+5dx^{0}}{\left(x^{2}-2x+5\right)^{2}}
ఏ విలువకు అయినా t, t^{1}=t.
\frac{\left(-d\right)x^{2}+5d\times 1}{\left(x^{2}-2x+5\right)^{2}}
0కి మినహా ఏ విలువకు అయినా t, t^{0}=1.
\frac{\left(-d\right)x^{2}+5d}{\left(x^{2}-2x+5\right)^{2}}
ఏ విలువకు అయినా t, t\times 1=t మరియు 1t=t.