మెయిన్ కంటెంట్ కు వెళ్లండి
మూల్యాంకనం చేయండి
Tick mark Image
x ఆధారంగా వేరు పరచండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

\frac{1}{\left(x-1\right)\left(x+1\right)}-\frac{2}{\left(x-1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
కారకం x^{2}-1. కారకం x^{2}+3x-4.
\frac{x+4}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}-\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
వ్యక్తీకరణలను జోడించడానికి లేదా వ్యవకలనం చేయడానికి, వాటి హద్దులను ఒకే విధంగా చేయడానికి వాటిని విస్తరించండి. \left(x-1\right)\left(x+1\right) మరియు \left(x-1\right)\left(x+4\right) యొక్క కనిష్ట సామాన్య గుణిజం \left(x-1\right)\left(x+1\right)\left(x+4\right). \frac{1}{\left(x-1\right)\left(x+1\right)} సార్లు \frac{x+4}{x+4}ని గుణించండి. \frac{2}{\left(x-1\right)\left(x+4\right)} సార్లు \frac{x+1}{x+1}ని గుణించండి.
\frac{x+4-2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
\frac{x+4}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} మరియు \frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను వ్యవకలనం చేయడం ద్వారా వాటిని వ్యవకలనం చేయండి.
\frac{x+4-2x-2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
x+4-2\left(x+1\right)లో గుణాకారాలు చేయండి.
\frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
x+4-2x-2లోని పదాల వలె జత చేయండి.
\frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x-3\right)\left(x+1\right)}
కారకం x^{2}-2x-3.
\frac{\left(-x+2\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
వ్యక్తీకరణలను జోడించడానికి లేదా వ్యవకలనం చేయడానికి, వాటి హద్దులను ఒకే విధంగా చేయడానికి వాటిని విస్తరించండి. \left(x-1\right)\left(x+1\right)\left(x+4\right) మరియు \left(x-3\right)\left(x+1\right) యొక్క కనిష్ట సామాన్య గుణిజం \left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right). \frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} సార్లు \frac{x-3}{x-3}ని గుణించండి. \frac{1}{\left(x-3\right)\left(x+1\right)} సార్లు \frac{\left(x-1\right)\left(x+4\right)}{\left(x-1\right)\left(x+4\right)}ని గుణించండి.
\frac{\left(-x+2\right)\left(x-3\right)+\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
\frac{\left(-x+2\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)} మరియు \frac{\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను కూడటం ద్వారా వాటిని కూడండి.
\frac{-x^{2}+3x+2x-6+x^{2}+4x-x-4}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
\left(-x+2\right)\left(x-3\right)+\left(x-1\right)\left(x+4\right)లో గుణాకారాలు చేయండి.
\frac{8x-10}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
-x^{2}+3x+2x-6+x^{2}+4x-x-4లోని పదాల వలె జత చేయండి.
\frac{8x-10}{x^{4}+x^{3}-13x^{2}-x+12}
\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)ని విస్తరించండి.