మూల్యాంకనం చేయండి
\frac{10-x^{2}}{x+3}
x ఆధారంగా వేరు పరచండి
-\frac{x^{2}+6x+10}{\left(x+3\right)^{2}}
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\frac{1}{x+3}+\frac{\left(-x+3\right)\left(x+3\right)}{x+3}
వ్యక్తీకరణలను జోడించడానికి లేదా వ్యవకలనం చేయడానికి, వాటి హద్దులను ఒకే విధంగా చేయడానికి వాటిని విస్తరించండి. -x+3 సార్లు \frac{x+3}{x+3}ని గుణించండి.
\frac{1+\left(-x+3\right)\left(x+3\right)}{x+3}
\frac{1}{x+3} మరియు \frac{\left(-x+3\right)\left(x+3\right)}{x+3} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను కూడటం ద్వారా వాటిని కూడండి.
\frac{1-x^{2}-3x+3x+9}{x+3}
1+\left(-x+3\right)\left(x+3\right)లో గుణాకారాలు చేయండి.
\frac{10-x^{2}}{x+3}
1-x^{2}-3x+3x+9లోని పదాల వలె జత చేయండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x+3}+\frac{\left(-x+3\right)\left(x+3\right)}{x+3})
వ్యక్తీకరణలను జోడించడానికి లేదా వ్యవకలనం చేయడానికి, వాటి హద్దులను ఒకే విధంగా చేయడానికి వాటిని విస్తరించండి. -x+3 సార్లు \frac{x+3}{x+3}ని గుణించండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+\left(-x+3\right)\left(x+3\right)}{x+3})
\frac{1}{x+3} మరియు \frac{\left(-x+3\right)\left(x+3\right)}{x+3} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను కూడటం ద్వారా వాటిని కూడండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1-x^{2}-3x+3x+9}{x+3})
1+\left(-x+3\right)\left(x+3\right)లో గుణాకారాలు చేయండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10-x^{2}}{x+3})
1-x^{2}-3x+3x+9లోని పదాల వలె జత చేయండి.
\frac{\left(x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2}+10)-\left(-x^{2}+10\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)}{\left(x^{1}+3\right)^{2}}
ఏవైనా రెండు అవకలనీయ ఫలముల కోసం, రెండు ఫలముల యొక్క భాగాహారలబ్ధము యొక్క వ్యుత్పన్నము అనేది లవము యొక్క వ్యుత్పన్నమును హారముసార్లు గుణించిన దాని నుండి హారము యొక్క వ్యుత్పన్నమును లవముసార్లు గుణించిన తర్వాత హారము వర్గాన్ని మొత్తంగా భాగించిన దానితో సమానం.
\frac{\left(x^{1}+3\right)\times 2\left(-1\right)x^{2-1}-\left(-x^{2}+10\right)x^{1-1}}{\left(x^{1}+3\right)^{2}}
బహుపదం యొక్క వ్యుత్పన్నం అనేది దాని రాశుల యొక్క వ్యుత్పన్నముల మొత్తం. ఏ రాశి యొక్క వ్యుత్పన్నం అయినా 0. nax^{n-1} యొక్క వ్యుత్పన్నం ax^{n}.
\frac{\left(x^{1}+3\right)\left(-2\right)x^{1}-\left(-x^{2}+10\right)x^{0}}{\left(x^{1}+3\right)^{2}}
అంకగణితము చేయండి.
\frac{x^{1}\left(-2\right)x^{1}+3\left(-2\right)x^{1}-\left(-x^{2}x^{0}+10x^{0}\right)}{\left(x^{1}+3\right)^{2}}
విభాగ న్యాయమును ఉపయోగించి విస్తరించండి.
\frac{-2x^{1+1}+3\left(-2\right)x^{1}-\left(-x^{2}+10x^{0}\right)}{\left(x^{1}+3\right)^{2}}
ఒకే పీఠము యొక్క ఘాతములను గుణించడం కోసం వాటి ఘాతాంకాలను కూడండి.
\frac{-2x^{2}-6x^{1}-\left(-x^{2}+10x^{0}\right)}{\left(x^{1}+3\right)^{2}}
అంకగణితము చేయండి.
\frac{-2x^{2}-6x^{1}-\left(-x^{2}\right)-10x^{0}}{\left(x^{1}+3\right)^{2}}
అనవసర కుండలీకరణములను తీసివేయండి.
\frac{\left(-2-\left(-1\right)\right)x^{2}-6x^{1}-10x^{0}}{\left(x^{1}+3\right)^{2}}
ఒకే రకమైన పదాలను జత చేయండి.
\frac{-x^{2}-6x^{1}-10x^{0}}{\left(x^{1}+3\right)^{2}}
-1ని -2 నుండి వ్యవకలనం చేయండి.
\frac{-x^{2}-6x-10x^{0}}{\left(x+3\right)^{2}}
ఏ విలువకు అయినా t, t^{1}=t.
\frac{-x^{2}-6x-10\times 1}{\left(x+3\right)^{2}}
0కి మినహా ఏ విలువకు అయినా t, t^{0}=1.
\frac{-x^{2}-6x-10}{\left(x+3\right)^{2}}
ఏ విలువకు అయినా t, t\times 1=t మరియు 1t=t.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}