మూల్యాంకనం చేయండి
-\frac{1}{12x^{15}}
x ఆధారంగా వేరు పరచండి
\frac{5}{4x^{16}}
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\frac{1}{-30x^{7}\times \frac{2x^{8}}{5}}
-30ని పొందడం కోసం -6 మరియు 5ని గుణించండి.
\frac{1}{-6\times 2x^{8}x^{7}}
30 మరియు 5లో అతిపెద్ద ఉమ్మడి కారకము 5ను తీసివేయండి.
\frac{1}{-6\times 2x^{15}}
ఒకే పీఠము యొక్క ఘాతములను భాగించడం కోసం, వాటి ఘాతాంకములను జోడించండి. 8కి 7ని జోడించి 15 పొందండి.
\frac{1}{-12x^{15}}
-12ని పొందడం కోసం -6 మరియు 2ని గుణించండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{-30x^{7}\times \frac{2x^{8}}{5}})
-30ని పొందడం కోసం -6 మరియు 5ని గుణించండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{-6\times 2x^{8}x^{7}})
30 మరియు 5లో అతిపెద్ద ఉమ్మడి కారకము 5ను తీసివేయండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{-6\times 2x^{15}})
ఒకే పీఠము యొక్క ఘాతములను భాగించడం కోసం, వాటి ఘాతాంకములను జోడించండి. 8కి 7ని జోడించి 15 పొందండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{-12x^{15}})
-12ని పొందడం కోసం -6 మరియు 2ని గుణించండి.
-\left(-12x^{15}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(-12x^{15})
F అనేది రెండు అవకలనీయ ఫలముల యొక్క సంయోజనము అయితే f\left(u\right) మరియు u=g\left(x\right), F\left(x\right)=f\left(g\left(x\right)\right) అయితే, ఆపై F యొక్క వ్యుత్పన్నము x సంబంధించి g యొక్క వ్యుత్పన్నమును uతో గుణించడానికి సంబంధించి f యొక్క వ్యుత్పన్నము అయితే , \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(-12x^{15}\right)^{-2}\times 15\left(-12\right)x^{15-1}
బహుపదం యొక్క వ్యుత్పన్నం అనేది దాని రాశుల యొక్క వ్యుత్పన్నముల మొత్తం. ఏ రాశి యొక్క వ్యుత్పన్నం అయినా 0. nax^{n-1} యొక్క వ్యుత్పన్నం ax^{n}.
180x^{14}\left(-12x^{15}\right)^{-2}
సరళీకృతం చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}