లబ్ధమూలము
\frac{\sqrt{2}\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2\right)}{2}
మూల్యాంకనం చేయండి
-\frac{2\sqrt{3}ba^{2}c^{5}}{2}+\frac{2\sqrt{5}ab^{2}c^{4}}{2}+\sqrt{2}
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
factor(\frac{2abc+\sqrt{10}a^{2}b^{3}c^{5}-\sqrt{6}a^{3}b^{2}c^{6}}{\sqrt{2}abc})
4 యొక్క వర్గ మూలమును గణించండి మరియు 2ని పొందండి.
factor(\frac{abc\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2\right)}{\sqrt{2}abc})
ఇప్పటికే \frac{2abc+\sqrt{10}a^{2}b^{3}c^{5}-\sqrt{6}a^{3}b^{2}c^{6}}{\sqrt{2}abc}లో గుణకం చేయని సూత్రీకరణలను గుణకం చేయండి.
factor(\frac{-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2}{\sqrt{2}})
లవము మరియు హారము రెండింటిలో abcని పరిష్కరించండి.
factor(\frac{\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}})
లవం, హారాన్ని \sqrt{2}తో గుణించడం ద్వారా \frac{-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2}{\sqrt{2}} యొక్క హారాన్ని రేషనలైజ్ చేయండి.
factor(\frac{\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2\right)\sqrt{2}}{2})
\sqrt{2} యొక్క స్క్వేర్ 2.
factor(\frac{-\sqrt{6}ba^{2}c^{5}\sqrt{2}+\sqrt{10}ab^{2}c^{4}\sqrt{2}+2\sqrt{2}}{2})
\sqrt{2}తో -\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
factor(\frac{-\sqrt{2}\sqrt{3}ba^{2}c^{5}\sqrt{2}+\sqrt{10}ab^{2}c^{4}\sqrt{2}+2\sqrt{2}}{2})
కారకం 6=2\times 3. ప్రాడక్ట్ \sqrt{2\times 3} యొక్క స్క్వేర్ రూట్ను స్క్వేర్ రూట్స్ \sqrt{2}\sqrt{3} యొక్క ప్రాడక్ట్ లాగా తిరిగి వ్రాయండి.
factor(\frac{-2ba^{2}c^{5}\sqrt{3}+\sqrt{10}ab^{2}c^{4}\sqrt{2}+2\sqrt{2}}{2})
2ని పొందడం కోసం \sqrt{2} మరియు \sqrt{2}ని గుణించండి.
factor(\frac{-2ba^{2}c^{5}\sqrt{3}+\sqrt{2}\sqrt{5}ab^{2}c^{4}\sqrt{2}+2\sqrt{2}}{2})
కారకం 10=2\times 5. ప్రాడక్ట్ \sqrt{2\times 5} యొక్క స్క్వేర్ రూట్ను స్క్వేర్ రూట్స్ \sqrt{2}\sqrt{5} యొక్క ప్రాడక్ట్ లాగా తిరిగి వ్రాయండి.
factor(\frac{-2ba^{2}c^{5}\sqrt{3}+2ab^{2}c^{4}\sqrt{5}+2\sqrt{2}}{2})
2ని పొందడం కోసం \sqrt{2} మరియు \sqrt{2}ని గుణించండి.
2\left(-ba^{2}c^{5}\sqrt{3}+ab^{2}c^{4}\sqrt{5}+\sqrt{2}\right)
-2ba^{2}c^{5}\times 3^{\frac{1}{2}}+2ab^{2}c^{4}\times 5^{\frac{1}{2}}+2\times 2^{\frac{1}{2}}ని పరిగణించండి. 2 యొక్క లబ్ధమూలమును కనుగొనండి.
-ba^{2}c^{5}\sqrt{3}+ab^{2}c^{4}\sqrt{5}+\sqrt{2}
పూర్తి ఫ్యాక్టర్ చేసిన ఎక్స్ప్రెషన్ని తిరిగి వ్రాయండి. సరళీకృతం చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}