మూల్యాంకనం చేయండి
-4
లబ్ధమూలము
-4
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\frac{\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
వ్యక్తీకరణలను జోడించడానికి లేదా వ్యవకలనం చేయడానికి, వాటి హద్దులను ఒకే విధంగా చేయడానికి వాటిని విస్తరించండి. x+y మరియు x-y యొక్క కనిష్ట సామాన్య గుణిజం \left(x+y\right)\left(x-y\right). \frac{x-y}{x+y} సార్లు \frac{x-y}{x-y}ని గుణించండి. \frac{x+y}{x-y} సార్లు \frac{x+y}{x+y}ని గుణించండి.
\frac{\frac{\left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} మరియు \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను వ్యవకలనం చేయడం ద్వారా వాటిని వ్యవకలనం చేయండి.
\frac{\frac{x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
\left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right)లో గుణాకారాలు చేయండి.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}లోని పదాల వలె జత చేయండి.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}
కారకం x^{2}-y^{2}.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}
వ్యక్తీకరణలను జోడించడానికి లేదా వ్యవకలనం చేయడానికి, వాటి హద్దులను ఒకే విధంగా చేయడానికి వాటిని విస్తరించండి. 1 సార్లు \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}ని గుణించండి.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}}
\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} మరియు \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను వ్యవకలనం చేయడం ద్వారా వాటిని వ్యవకలనం చేయండి.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}}
\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)లో గుణాకారాలు చేయండి.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{xy}{\left(x+y\right)\left(x-y\right)}}
x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}లోని పదాల వలె జత చేయండి.
\frac{-4xy\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)xy}
\frac{xy}{\left(x+y\right)\left(x-y\right)} యొక్క విలోమరాశులను \frac{-4xy}{\left(x+y\right)\left(x-y\right)}తో గుణించడం ద్వారా \frac{xy}{\left(x+y\right)\left(x-y\right)}తో \frac{-4xy}{\left(x+y\right)\left(x-y\right)}ని భాగించండి.
-4
లవము మరియు హారము రెండింటిలో xy\left(x+y\right)\left(x-y\right)ని పరిష్కరించండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}