మెయిన్ కంటెంట్ కు వెళ్లండి
α ఆధారంగా వేరు పరచండి
Tick mark Image
మూల్యాంకనం చేయండి
Tick mark Image
క్విజ్
Trigonometry

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

\frac{\mathrm{d}}{\mathrm{d}\alpha }(\cos(\alpha ))=\left(\lim_{h\to 0}\frac{\cos(\alpha +h)-\cos(\alpha )}{h}\right)
ఫలము f\left(x\right) కోసం, వ్యుత్పన్నము అనేది \frac{f\left(x+h\right)-f\left(x\right)}{h} యొక్క మితి, ఆ మితి ఉనికిలో ఉంటే h ఆపై 0 అవుతుంది.
\lim_{h\to 0}\frac{\cos(h+\alpha )-\cos(\alpha )}{h}
కోసైన్ యొక్క సంకలనం సూత్రాన్ని ఉపయోగించండి.
\lim_{h\to 0}\frac{\cos(\alpha )\left(\cos(h)-1\right)-\sin(\alpha )\sin(h)}{h}
\cos(\alpha ) యొక్క లబ్ధమూలమును కనుగొనండి.
\left(\lim_{h\to 0}\cos(\alpha )\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\left(\lim_{h\to 0}\sin(\alpha )\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
మితిని తిరిగి వ్రాయండి.
\cos(\alpha )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(\alpha )\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
మితి h నుండి 0ను గణిస్తున్న సమయంలో \alpha స్థిరంగా ఉంటుంది అన్న వాస్తవాన్ని ఉపయోగించండి.
\cos(\alpha )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(\alpha )
\lim_{\alpha \to 0}\frac{\sin(\alpha )}{\alpha } యొక్క మితి 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
మితి \lim_{h\to 0}\frac{\cos(h)-1}{h}ని మూల్యాంకనం చేయాలంటే, ముందుగా లవము మరియు హారమును \cos(h)+1తో గుణించండి.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
\cos(h)+1 సార్లు \cos(h)-1ని గుణించండి.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
పైతాగరస్ గుర్తింపుని ఉపయోగించండి.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
మితిని తిరిగి వ్రాయండి.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
\lim_{\alpha \to 0}\frac{\sin(\alpha )}{\alpha } యొక్క మితి 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
\frac{\sin(h)}{\cos(h)+1} అనేది 0 వద్ద అవిచ్ఛిన్నం అని వాస్తవాన్ని ఉపయోగించండి.
-\sin(\alpha )
ఉక్తి \cos(\alpha )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(\alpha )లో 0 విలువను ప్రతిక్షేపించండి.