మూల్యాంకనం చేయండి
\left(\frac{x}{y}\right)^{2}
x ఆధారంగా వేరు పరచండి
\frac{2x}{y^{2}}
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\frac{\left(\sqrt{x^{2}+y^{2}}-y\right)\left(\sqrt{x^{2}+y^{2}}+y\right)}{\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)}
\frac{\sqrt{x^{2}-y^{2}}+x}{\sqrt{x^{2}+y^{2}}+y} యొక్క విలోమరాశులను \frac{\sqrt{x^{2}+y^{2}}-y}{x-\sqrt{x^{2}-y^{2}}}తో గుణించడం ద్వారా \frac{\sqrt{x^{2}-y^{2}}+x}{\sqrt{x^{2}+y^{2}}+y}తో \frac{\sqrt{x^{2}+y^{2}}-y}{x-\sqrt{x^{2}-y^{2}}}ని భాగించండి.
\frac{\left(\sqrt{x^{2}+y^{2}}\right)^{2}-y^{2}}{\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)}
\left(\sqrt{x^{2}+y^{2}}-y\right)\left(\sqrt{x^{2}+y^{2}}+y\right)ని పరిగణించండి. ఈ నియమాన్ని ఉపయోగించి గుణకారాన్ని చతరుస్రాల మధ్య తేడా వలె మార్చండి: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x^{2}+y^{2}-y^{2}}{\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)}
2 యొక్క ఘాతంలో \sqrt{x^{2}+y^{2}} ఉంచి గణించి, x^{2}+y^{2}ని పొందండి.
\frac{x^{2}}{\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)}
0ని పొందడం కోసం y^{2} మరియు -y^{2}ని జత చేయండి.
\frac{x^{2}}{x^{2}-\left(\sqrt{x^{2}-y^{2}}\right)^{2}}
\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)ని పరిగణించండి. ఈ నియమాన్ని ఉపయోగించి గుణకారాన్ని చతరుస్రాల మధ్య తేడా వలె మార్చండి: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x^{2}}{x^{2}-\left(x^{2}-y^{2}\right)}
2 యొక్క ఘాతంలో \sqrt{x^{2}-y^{2}} ఉంచి గణించి, x^{2}-y^{2}ని పొందండి.
\frac{x^{2}}{x^{2}-x^{2}+y^{2}}
x^{2}-y^{2} యొక్క వ్యతిరేకాన్ని కనుగొనాలంటే, ప్రతి పదం యొక్క వ్యతిరేకాన్ని కనుగొనండి.
\frac{x^{2}}{y^{2}}
0ని పొందడం కోసం x^{2} మరియు -x^{2}ని జత చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}