பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
z-க்காகத் தீர்க்கவும்
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

z^{2}-3z+\frac{9}{4}=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
z=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times \frac{9}{4}}}{2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 1, b-க்குப் பதிலாக -3 மற்றும் c-க்குப் பதிலாக \frac{9}{4}-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
z=\frac{-\left(-3\right)±\sqrt{9-4\times \frac{9}{4}}}{2}
-3-ஐ வர்க்கமாக்கவும்.
z=\frac{-\left(-3\right)±\sqrt{9-9}}{2}
\frac{9}{4}-ஐ -4 முறை பெருக்கவும்.
z=\frac{-\left(-3\right)±\sqrt{0}}{2}
-9-க்கு 9-ஐக் கூட்டவும்.
z=-\frac{-3}{2}
0-இன் வர்க்க மூலத்தை எடுக்கவும்.
z=\frac{3}{2}
-3-க்கு எதிரில் இருப்பது 3.
z^{2}-3z+\frac{9}{4}=0
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
\left(z-\frac{3}{2}\right)^{2}=0
காரணி z^{2}-3z+\frac{9}{4}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(z-\frac{3}{2}\right)^{2}}=\sqrt{0}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
z-\frac{3}{2}=0 z-\frac{3}{2}=0
எளிமையாக்கவும்.
z=\frac{3}{2} z=\frac{3}{2}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{3}{2}-ஐக் கூட்டவும்.
z=\frac{3}{2}
இப்போது சமன்பாடு தீர்க்கப்பட்டது. தீர்வுகள் ஒன்றுதான்.