பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

8x+2y=46,7x+3y=47
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
8x+2y=46
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
8x=-2y+46
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2y-ஐக் கழிக்கவும்.
x=\frac{1}{8}\left(-2y+46\right)
இரு பக்கங்களையும் 8-ஆல் வகுக்கவும்.
x=-\frac{1}{4}y+\frac{23}{4}
-2y+46-ஐ \frac{1}{8} முறை பெருக்கவும்.
7\left(-\frac{1}{4}y+\frac{23}{4}\right)+3y=47
பிற சமன்பாடு 7x+3y=47-இல் x-க்கு \frac{-y+23}{4}-ஐப் பிரதியிடவும்.
-\frac{7}{4}y+\frac{161}{4}+3y=47
\frac{-y+23}{4}-ஐ 7 முறை பெருக்கவும்.
\frac{5}{4}y+\frac{161}{4}=47
3y-க்கு -\frac{7y}{4}-ஐக் கூட்டவும்.
\frac{5}{4}y=\frac{27}{4}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{161}{4}-ஐக் கழிக்கவும்.
y=\frac{27}{5}
சமன்பாட்டின் இரு பக்கங்களையும் \frac{5}{4}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{1}{4}\times \frac{27}{5}+\frac{23}{4}
x=-\frac{1}{4}y+\frac{23}{4}-இல் y-க்கு \frac{27}{5}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{27}{20}+\frac{23}{4}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், \frac{27}{5}-ஐ -\frac{1}{4} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{22}{5}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{27}{20} உடன் \frac{23}{4}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{22}{5},y=\frac{27}{5}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
8x+2y=46,7x+3y=47
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}46\\47\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)
\left(\begin{matrix}8&2\\7&3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8\times 3-2\times 7}&-\frac{2}{8\times 3-2\times 7}\\-\frac{7}{8\times 3-2\times 7}&\frac{8}{8\times 3-2\times 7}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&-\frac{1}{5}\\-\frac{7}{10}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\times 46-\frac{1}{5}\times 47\\-\frac{7}{10}\times 46+\frac{4}{5}\times 47\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{22}{5}\\\frac{27}{5}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{22}{5},y=\frac{27}{5}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
8x+2y=46,7x+3y=47
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
7\times 8x+7\times 2y=7\times 46,8\times 7x+8\times 3y=8\times 47
8x மற்றும் 7x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 7-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 8-ஆலும் பெருக்கவும்.
56x+14y=322,56x+24y=376
எளிமையாக்கவும்.
56x-56x+14y-24y=322-376
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 56x+14y=322-இலிருந்து 56x+24y=376-ஐக் கழிக்கவும்.
14y-24y=322-376
-56x-க்கு 56x-ஐக் கூட்டவும். விதிகள் 56x மற்றும் -56x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-10y=322-376
-24y-க்கு 14y-ஐக் கூட்டவும்.
-10y=-54
-376-க்கு 322-ஐக் கூட்டவும்.
y=\frac{27}{5}
இரு பக்கங்களையும் -10-ஆல் வகுக்கவும்.
7x+3\times \frac{27}{5}=47
7x+3y=47-இல் y-க்கு \frac{27}{5}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
7x+\frac{81}{5}=47
\frac{27}{5}-ஐ 3 முறை பெருக்கவும்.
7x=\frac{154}{5}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{81}{5}-ஐக் கழிக்கவும்.
x=\frac{22}{5}
இரு பக்கங்களையும் 7-ஆல் வகுக்கவும்.
x=\frac{22}{5},y=\frac{27}{5}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.