பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்
வினாடி வினா
Polynomial

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

y^{3}-27=0
இரு பக்கங்களில் இருந்தும் 27-ஐக் கழிக்கவும்.
±27,±9,±3,±1
பிரிப்பு வர்க்கத் தேற்றத்தின்படி, அடுக்குக்கோவையின் எல்லா பிரிப்பு வர்க்கங்களும் \frac{p}{q} வடிவத்தில் இருக்கும், அதில் p ஆனது நிலையான -27-ஐ வகுக்கிறது மற்றும் q ஆனது மதிப்பில் பெரிய கெழுவான 1-ஐ வகுக்கிறது. அனைத்து விண்ணப்பதாரர்களின் பட்டியல் \frac{p}{q}.
y=3
முழுமையான மிகச்சிறிய மதிப்பிலிருந்து தொடங்கி, முழு எண் மதிப்புகளை முயல்வதன் மூலம் அத்தகைய ஒரு வர்க்கத்தைக் கண்டறியவும். முழு எண் வர்க்கங்கள் கண்டறியப்படவில்லை என்றால், பின்னங்களை முயலவும்.
y^{2}+3y+9=0
காரணி தேற்றத்தின்படி, ஒவ்வொரு வர்க்க k-க்கும் y-k-ஆனது அடுக்குக் கோவையின் காரணியாகும். y^{2}+3y+9-ஐப் பெற, y-3-ஐ y^{3}-27-ஆல் வகுக்கவும். முடிவுகள் 0-க்குச் சமமாக உள்ளபோது சமன்பாட்டைத் தீர்க்கவும்.
y=\frac{-3±\sqrt{3^{2}-4\times 1\times 9}}{2}
ax^{2}+bx+c=0 வடிவத்தில் உள்ள எல்லாச் சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தி தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரத்தில் a-க்குப் பதிலாக 1, b-க்குப் பதிலாக 3 மற்றும் c-க்கு பதிலாக 9-ஐ பதிலீடு செய்யவும்.
y=\frac{-3±\sqrt{-27}}{2}
கணக்கீடுகளைச் செய்யவும்.
y\in \emptyset
எதிர்மறை எண்ணின் கனமூலம் அசல் புலத்தில் வரையறுக்கப்படவில்லை என்பதால், தீர்வுகள் கிடைக்காது.
y=3
காணப்படும் தீர்வுகள் அனைத்தையும் பட்டியலிடவும்.