பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

a+b=-11 ab=1\times 24=24
குழுவாக்குதலின்படி கோவையைக் காரணிப்படுத்தவும். முதலில், கோவையை y^{2}+ay+by+24-ஆக மீண்டும் எழுத வேண்டும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
-1,-24 -2,-12 -3,-8 -4,-6
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் எதிர்மறையாக இருக்கும். 24 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-8 b=-3
-11 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(y^{2}-8y\right)+\left(-3y+24\right)
y^{2}-11y+24 என்பதை \left(y^{2}-8y\right)+\left(-3y+24\right) என மீண்டும் எழுதவும்.
y\left(y-8\right)-3\left(y-8\right)
முதல் குழுவில் y மற்றும் இரண்டாவது குழுவில் -3-ஐக் காரணிப்படுத்தவும்.
\left(y-8\right)\left(y-3\right)
பரவல் பண்பைப் பயன்படுத்தி y-8 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
y^{2}-11y+24=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
y=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 24}}{2}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
y=\frac{-\left(-11\right)±\sqrt{121-4\times 24}}{2}
-11-ஐ வர்க்கமாக்கவும்.
y=\frac{-\left(-11\right)±\sqrt{121-96}}{2}
24-ஐ -4 முறை பெருக்கவும்.
y=\frac{-\left(-11\right)±\sqrt{25}}{2}
-96-க்கு 121-ஐக் கூட்டவும்.
y=\frac{-\left(-11\right)±5}{2}
25-இன் வர்க்க மூலத்தை எடுக்கவும்.
y=\frac{11±5}{2}
-11-க்கு எதிரில் இருப்பது 11.
y=\frac{16}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு y=\frac{11±5}{2}-ஐத் தீர்க்கவும். 5-க்கு 11-ஐக் கூட்டவும்.
y=8
16-ஐ 2-ஆல் வகுக்கவும்.
y=\frac{6}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு y=\frac{11±5}{2}-ஐத் தீர்க்கவும். 11–இலிருந்து 5–ஐக் கழிக்கவும்.
y=3
6-ஐ 2-ஆல் வகுக்கவும்.
y^{2}-11y+24=\left(y-8\right)\left(y-3\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு 8-ஐயும், x_{2}-க்கு 3-ஐயும் பதிலீடு செய்யவும்.