பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
y, x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

y-3x=-5
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 3x-ஐக் கழிக்கவும்.
y-3x=-5,5y+3x=11
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
y-3x=-5
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் y-ஐத் தனிப்படுத்தி y-க்காக இதைத் தீர்க்கவும்.
y=3x-5
சமன்பாட்டின் இரு பக்கங்களிலும் 3x-ஐக் கூட்டவும்.
5\left(3x-5\right)+3x=11
பிற சமன்பாடு 5y+3x=11-இல் y-க்கு 3x-5-ஐப் பிரதியிடவும்.
15x-25+3x=11
3x-5-ஐ 5 முறை பெருக்கவும்.
18x-25=11
3x-க்கு 15x-ஐக் கூட்டவும்.
18x=36
சமன்பாட்டின் இரு பக்கங்களிலும் 25-ஐக் கூட்டவும்.
x=2
இரு பக்கங்களையும் 18-ஆல் வகுக்கவும்.
y=3\times 2-5
y=3x-5-இல் x-க்கு 2-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
y=6-5
2-ஐ 3 முறை பெருக்கவும்.
y=1
6-க்கு -5-ஐக் கூட்டவும்.
y=1,x=2
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
y-3x=-5
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 3x-ஐக் கழிக்கவும்.
y-3x=-5,5y+3x=11
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&-3\\5&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\11\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&-3\\5&3\end{matrix}\right))\left(\begin{matrix}1&-3\\5&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\5&3\end{matrix}\right))\left(\begin{matrix}-5\\11\end{matrix}\right)
\left(\begin{matrix}1&-3\\5&3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\5&3\end{matrix}\right))\left(\begin{matrix}-5\\11\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\5&3\end{matrix}\right))\left(\begin{matrix}-5\\11\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-3\times 5\right)}&-\frac{-3}{3-\left(-3\times 5\right)}\\-\frac{5}{3-\left(-3\times 5\right)}&\frac{1}{3-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-5\\11\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\-\frac{5}{18}&\frac{1}{18}\end{matrix}\right)\left(\begin{matrix}-5\\11\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\left(-5\right)+\frac{1}{6}\times 11\\-\frac{5}{18}\left(-5\right)+\frac{1}{18}\times 11\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
y=1,x=2
அணிக் கூறுகள் y மற்றும் x-ஐப் பிரித்தெடுக்கவும்.
y-3x=-5
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 3x-ஐக் கழிக்கவும்.
y-3x=-5,5y+3x=11
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
5y+5\left(-3\right)x=5\left(-5\right),5y+3x=11
y மற்றும் 5y-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 5-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
5y-15x=-25,5y+3x=11
எளிமையாக்கவும்.
5y-5y-15x-3x=-25-11
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 5y-15x=-25-இலிருந்து 5y+3x=11-ஐக் கழிக்கவும்.
-15x-3x=-25-11
-5y-க்கு 5y-ஐக் கூட்டவும். விதிகள் 5y மற்றும் -5y ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-18x=-25-11
-3x-க்கு -15x-ஐக் கூட்டவும்.
-18x=-36
-11-க்கு -25-ஐக் கூட்டவும்.
x=2
இரு பக்கங்களையும் -18-ஆல் வகுக்கவும்.
5y+3\times 2=11
5y+3x=11-இல் x-க்கு 2-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
5y+6=11
2-ஐ 3 முறை பெருக்கவும்.
5y=5
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 6-ஐக் கழிக்கவும்.
y=1
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
y=1,x=2
இப்போது அமைப்பு சரிசெய்யப்பட்டது.