பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

a+b=-6 ab=1\left(-160\right)=-160
குழுவாக்குதலின்படி கோவையைக் காரணிப்படுத்தவும். முதலில், கோவையை x^{2}+ax+bx-160-ஆக மீண்டும் எழுத வேண்டும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,-160 2,-80 4,-40 5,-32 8,-20 10,-16
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -160 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1-160=-159 2-80=-78 4-40=-36 5-32=-27 8-20=-12 10-16=-6
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-16 b=10
-6 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x^{2}-16x\right)+\left(10x-160\right)
x^{2}-6x-160 என்பதை \left(x^{2}-16x\right)+\left(10x-160\right) என மீண்டும் எழுதவும்.
x\left(x-16\right)+10\left(x-16\right)
முதல் குழுவில் x மற்றும் இரண்டாவது குழுவில் 10-ஐக் காரணிப்படுத்தவும்.
\left(x-16\right)\left(x+10\right)
பரவல் பண்பைப் பயன்படுத்தி x-16 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x^{2}-6x-160=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-160\right)}}{2}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-160\right)}}{2}
-6-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-6\right)±\sqrt{36+640}}{2}
-160-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-6\right)±\sqrt{676}}{2}
640-க்கு 36-ஐக் கூட்டவும்.
x=\frac{-\left(-6\right)±26}{2}
676-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{6±26}{2}
-6-க்கு எதிரில் இருப்பது 6.
x=\frac{32}{2}
இப்போது ± நேர்மறையாக உள்ளபோது x=\frac{6±26}{2} சமன்பாட்டைத் தீர்க்கவும். 26-க்கு 6-ஐக் கூட்டவும்.
x=16
32-ஐ 2-ஆல் வகுக்கவும்.
x=-\frac{20}{2}
இப்போது ± எதிர்மறையாக உள்ளபோது x=\frac{6±26}{2} சமன்பாட்டைத் தீர்க்கவும். 6–இலிருந்து 26–ஐக் கழிக்கவும்.
x=-10
-20-ஐ 2-ஆல் வகுக்கவும்.
x^{2}-6x-160=\left(x-16\right)\left(x-\left(-10\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு 16-ஐயும், x_{2}-க்கு -10-ஐயும் பதிலீடு செய்யவும்.
x^{2}-6x-160=\left(x-16\right)\left(x+10\right)
படிவம் p-\left(-q\right)-இன் கோவைகள் அனைத்தையும் p+q-க்கு எளிமையாக்கவும்.