பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்
வினாடி வினா
Algebra

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\left(x-1\right)^{2}=\left(\sqrt{x+5}\right)^{2}
சமன்பாட்டின் இரு பக்கங்களையும் வர்க்கமாக்கவும்.
x^{2}-2x+1=\left(\sqrt{x+5}\right)^{2}
\left(x-1\right)^{2}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a-b\right)^{2}=a^{2}-2ab+b^{2} பயன்படுத்தவும்.
x^{2}-2x+1=x+5
2-இன் அடுக்கு \sqrt{x+5}-ஐ கணக்கிட்டு, x+5-ஐப் பெறவும்.
x^{2}-2x+1-x=5
இரு பக்கங்களில் இருந்தும் x-ஐக் கழிக்கவும்.
x^{2}-3x+1=5
-2x மற்றும் -x-ஐ இணைத்தால், தீர்வு -3x.
x^{2}-3x+1-5=0
இரு பக்கங்களில் இருந்தும் 5-ஐக் கழிக்கவும்.
x^{2}-3x-4=0
1-இலிருந்து 5-ஐக் கழிக்கவும், தீர்வு -4.
a+b=-3 ab=-4
சமன்பாட்டைத் தீர்க்க, x^{2}-3x-4 காரணியானது x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) சூத்திரத்தைப் பயன்படுத்துகிறது. a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,-4 2,-2
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -4 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1-4=-3 2-2=0
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-4 b=1
-3 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x-4\right)\left(x+1\right)
பெறப்பட்ட மதிப்புகளைப் பயன்படுத்தி பின்னக் கோவை \left(x+a\right)\left(x+b\right)-ஐ மீண்டும் எழுதவும்.
x=4 x=-1
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x-4=0 மற்றும் x+1=0-ஐத் தீர்க்கவும்.
4-1=\sqrt{4+5}
சமன்பாடு x-1=\sqrt{x+5}-இல் x-க்கு 4-ஐ பதிலிடவும்.
3=3
எளிமையாக்கவும். சமன்பாட்டை x=4 மதிப்பு பூர்த்திசெய்கிறது.
-1-1=\sqrt{-1+5}
சமன்பாடு x-1=\sqrt{x+5}-இல் x-க்கு -1-ஐ பதிலிடவும்.
-2=2
எளிமையாக்கவும். x=-1 மதிப்பு சமன்பாட்டைப் பூர்த்தி செய்யவில்லை, ஏனெனில் இடதுபுறமும் வலதுபுறமும் எதிர்க்குறிகள் உள்ளன.
x=4
x-1=\sqrt{x+5} சமன்பாட்டிற்கு ஒரு தனித்துவமான தீர்வு உள்ளது.