பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image
x குறித்து வகையிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\frac{x^{3}\left(x+3\right)}{x+3}+\frac{1}{x+3}
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{x+3}{x+3}-ஐ x^{3} முறை பெருக்கவும்.
\frac{x^{3}\left(x+3\right)+1}{x+3}
\frac{x^{3}\left(x+3\right)}{x+3} மற்றும் \frac{1}{x+3} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{x^{4}+3x^{3}+1}{x+3}
x^{3}\left(x+3\right)+1 இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}\left(x+3\right)}{x+3}+\frac{1}{x+3})
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{x+3}{x+3}-ஐ x^{3} முறை பெருக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}\left(x+3\right)+1}{x+3})
\frac{x^{3}\left(x+3\right)}{x+3} மற்றும் \frac{1}{x+3} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}+3x^{3}+1}{x+3})
x^{3}\left(x+3\right)+1 இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{\left(x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}+3x^{3}+1)-\left(x^{4}+3x^{3}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)}{\left(x^{1}+3\right)^{2}}
ஏதேனும் இரண்டு வகையிடக்கூடிய சார்புகளுக்கு, இரண்டு சார்புகளின் ஈவின் வகைக்கெழு என்பது தொகுதியின் வகைக்கெழுவை பகுதியால் பெருக்க வரும் மதிப்பிலிருந்து பகுதியின் வகைக்கெழுவை தொகுதியால் பெருக்க வரும் மதிப்பைக் கழித்து, எல்லாமே பகுதியின் வர்க்கத்தால் வகுக்கப்படும்.
\frac{\left(x^{1}+3\right)\left(4x^{4-1}+3\times 3x^{3-1}\right)-\left(x^{4}+3x^{3}+1\right)x^{1-1}}{\left(x^{1}+3\right)^{2}}
பல்லுறுப்புக்கோவையின் வகைக்கெழு என்பது அதன் உருப்புகளின் வகைக்கெழுவின் கூட்டுத்தொகை ஆகும். மாறிலியின் வகைக்கெழு 0 ஆகும். ax^{n}-இன் வகைக்கெழு nax^{n-1} ஆகும்.
\frac{\left(x^{1}+3\right)\left(4x^{3}+9x^{2}\right)-\left(x^{4}+3x^{3}+1\right)x^{0}}{\left(x^{1}+3\right)^{2}}
எளிமையாக்கவும்.
\frac{x^{1}\times 4x^{3}+x^{1}\times 9x^{2}+3\times 4x^{3}+3\times 9x^{2}-\left(x^{4}+3x^{3}+1\right)x^{0}}{\left(x^{1}+3\right)^{2}}
4x^{3}+9x^{2}-ஐ x^{1}+3 முறை பெருக்கவும்.
\frac{x^{1}\times 4x^{3}+x^{1}\times 9x^{2}+3\times 4x^{3}+3\times 9x^{2}-\left(x^{4}x^{0}+3x^{3}x^{0}+x^{0}\right)}{\left(x^{1}+3\right)^{2}}
x^{0}-ஐ x^{4}+3x^{3}+1 முறை பெருக்கவும்.
\frac{4x^{1+3}+9x^{1+2}+3\times 4x^{3}+3\times 9x^{2}-\left(x^{4}+3x^{3}+x^{0}\right)}{\left(x^{1}+3\right)^{2}}
ஒரே அடியின் அடுக்குகளைப் பெருக்க, அவற்றின் அடுக்குகளைக் கூட்டவும்.
\frac{4x^{4}+9x^{3}+12x^{3}+27x^{2}-\left(x^{4}+3x^{3}+x^{0}\right)}{\left(x^{1}+3\right)^{2}}
எளிமையாக்கவும்.
\frac{3x^{4}+6x^{3}+12x^{3}+27x^{2}-x^{0}}{\left(x^{1}+3\right)^{2}}
ஒரேமாதிரியான உறுப்புகளை இணைக்கவும்.
\frac{3x^{4}+6x^{3}+12x^{3}+27x^{2}-x^{0}}{\left(x+3\right)^{2}}
t, t^{1}=t எந்தவொரு சொல்லுக்கும்.
\frac{3x^{4}+6x^{3}+12x^{3}+27x^{2}-1}{\left(x+3\right)^{2}}
0, t^{0}=1 தவிர்த்து, எந்தவொரு சொல்லுக்கும் t.