பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்
வினாடி வினா
Quadratic Equation

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

a+b=-4 ab=-60
சமன்பாட்டைத் தீர்க்க, x^{2}-4x-60 காரணியானது x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) சூத்திரத்தைப் பயன்படுத்துகிறது. a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -60 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-10 b=6
-4 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x-10\right)\left(x+6\right)
பெறப்பட்ட மதிப்புகளைப் பயன்படுத்தி பின்னக் கோவை \left(x+a\right)\left(x+b\right)-ஐ மீண்டும் எழுதவும்.
x=10 x=-6
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x-10=0 மற்றும் x+6=0-ஐத் தீர்க்கவும்.
a+b=-4 ab=1\left(-60\right)=-60
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை x^{2}+ax+bx-60-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -60 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-10 b=6
-4 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x^{2}-10x\right)+\left(6x-60\right)
x^{2}-4x-60 என்பதை \left(x^{2}-10x\right)+\left(6x-60\right) என மீண்டும் எழுதவும்.
x\left(x-10\right)+6\left(x-10\right)
முதல் குழுவில் x மற்றும் இரண்டாவது குழுவில் 6-ஐக் காரணிப்படுத்தவும்.
\left(x-10\right)\left(x+6\right)
பரவல் பண்பைப் பயன்படுத்தி x-10 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x=10 x=-6
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x-10=0 மற்றும் x+6=0-ஐத் தீர்க்கவும்.
x^{2}-4x-60=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-60\right)}}{2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 1, b-க்குப் பதிலாக -4 மற்றும் c-க்குப் பதிலாக -60-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-60\right)}}{2}
-4-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-4\right)±\sqrt{16+240}}{2}
-60-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-4\right)±\sqrt{256}}{2}
240-க்கு 16-ஐக் கூட்டவும்.
x=\frac{-\left(-4\right)±16}{2}
256-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{4±16}{2}
-4-க்கு எதிரில் இருப்பது 4.
x=\frac{20}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{4±16}{2}-ஐத் தீர்க்கவும். 16-க்கு 4-ஐக் கூட்டவும்.
x=10
20-ஐ 2-ஆல் வகுக்கவும்.
x=-\frac{12}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{4±16}{2}-ஐத் தீர்க்கவும். 4–இலிருந்து 16–ஐக் கழிக்கவும்.
x=-6
-12-ஐ 2-ஆல் வகுக்கவும்.
x=10 x=-6
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
x^{2}-4x-60=0
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
x^{2}-4x-60-\left(-60\right)=-\left(-60\right)
சமன்பாட்டின் இரு பக்கங்களிலும் 60-ஐக் கூட்டவும்.
x^{2}-4x=-\left(-60\right)
-60-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
x^{2}-4x=60
0–இலிருந்து -60–ஐக் கழிக்கவும்.
x^{2}-4x+\left(-2\right)^{2}=60+\left(-2\right)^{2}
-2-ஐப் பெற, x உறுப்பின் ஈவான -4-ஐ 2-ஆல் வகுக்கவும். பிறகு -2-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-4x+4=60+4
-2-ஐ வர்க்கமாக்கவும்.
x^{2}-4x+4=64
4-க்கு 60-ஐக் கூட்டவும்.
\left(x-2\right)^{2}=64
காரணி x^{2}-4x+4. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-2\right)^{2}}=\sqrt{64}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-2=8 x-2=-8
எளிமையாக்கவும்.
x=10 x=-6
சமன்பாட்டின் இரு பக்கங்களிலும் 2-ஐக் கூட்டவும்.