பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image
விளக்கப்படம்
வினாடி வினா
Polynomial

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

a+b=-10 ab=1\left(-24\right)=-24
குழுவாக்குதலின்படி கோவையைக் காரணிப்படுத்தவும். முதலில், கோவையை x^{2}+ax+bx-24-ஆக மீண்டும் எழுத வேண்டும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,-24 2,-12 3,-8 4,-6
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -24 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-12 b=2
-10 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x^{2}-12x\right)+\left(2x-24\right)
x^{2}-10x-24 என்பதை \left(x^{2}-12x\right)+\left(2x-24\right) என மீண்டும் எழுதவும்.
x\left(x-12\right)+2\left(x-12\right)
முதல் குழுவில் x மற்றும் இரண்டாவது குழுவில் 2-ஐக் காரணிப்படுத்தவும்.
\left(x-12\right)\left(x+2\right)
பரவல் பண்பைப் பயன்படுத்தி x-12 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x^{2}-10x-24=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-24\right)}}{2}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-24\right)}}{2}
-10-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-10\right)±\sqrt{100+96}}{2}
-24-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-10\right)±\sqrt{196}}{2}
96-க்கு 100-ஐக் கூட்டவும்.
x=\frac{-\left(-10\right)±14}{2}
196-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{10±14}{2}
-10-க்கு எதிரில் இருப்பது 10.
x=\frac{24}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{10±14}{2}-ஐத் தீர்க்கவும். 14-க்கு 10-ஐக் கூட்டவும்.
x=12
24-ஐ 2-ஆல் வகுக்கவும்.
x=-\frac{4}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{10±14}{2}-ஐத் தீர்க்கவும். 10–இலிருந்து 14–ஐக் கழிக்கவும்.
x=-2
-4-ஐ 2-ஆல் வகுக்கவும்.
x^{2}-10x-24=\left(x-12\right)\left(x-\left(-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு 12-ஐயும், x_{2}-க்கு -2-ஐயும் பதிலீடு செய்யவும்.
x^{2}-10x-24=\left(x-12\right)\left(x+2\right)
படிவம் p-\left(-q\right)-இன் கோவைகள் அனைத்தையும் p+q-க்கு எளிமையாக்கவும்.