பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x^{2}-8x=0
இரு பக்கங்களில் இருந்தும் 8x-ஐக் கழிக்கவும்.
x\left(x-8\right)=0
x-ஐக் காரணிப்படுத்தவும்.
x=0 x=8
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x=0 மற்றும் x-8=0-ஐத் தீர்க்கவும்.
x^{2}-8x=0
இரு பக்கங்களில் இருந்தும் 8x-ஐக் கழிக்கவும்.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 1, b-க்குப் பதிலாக -8 மற்றும் c-க்குப் பதிலாக 0-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-8\right)±8}{2}
\left(-8\right)^{2}-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{8±8}{2}
-8-க்கு எதிரில் இருப்பது 8.
x=\frac{16}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{8±8}{2}-ஐத் தீர்க்கவும். 8-க்கு 8-ஐக் கூட்டவும்.
x=8
16-ஐ 2-ஆல் வகுக்கவும்.
x=\frac{0}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{8±8}{2}-ஐத் தீர்க்கவும். 8–இலிருந்து 8–ஐக் கழிக்கவும்.
x=0
0-ஐ 2-ஆல் வகுக்கவும்.
x=8 x=0
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
x^{2}-8x=0
இரு பக்கங்களில் இருந்தும் 8x-ஐக் கழிக்கவும்.
x^{2}-8x+\left(-4\right)^{2}=\left(-4\right)^{2}
-4-ஐப் பெற, x உறுப்பின் ஈவான -8-ஐ 2-ஆல் வகுக்கவும். பிறகு -4-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-8x+16=16
-4-ஐ வர்க்கமாக்கவும்.
\left(x-4\right)^{2}=16
காரணி x^{2}-8x+16. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-4\right)^{2}}=\sqrt{16}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-4=4 x-4=-4
எளிமையாக்கவும்.
x=8 x=0
சமன்பாட்டின் இரு பக்கங்களிலும் 4-ஐக் கூட்டவும்.