பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்
வினாடி வினா
Polynomial

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x^{2}-25x=0
இரு பக்கங்களில் இருந்தும் 25x-ஐக் கழிக்கவும்.
x\left(x-25\right)=0
x-ஐக் காரணிப்படுத்தவும்.
x=0 x=25
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x=0 மற்றும் x-25=0-ஐத் தீர்க்கவும்.
x^{2}-25x=0
இரு பக்கங்களில் இருந்தும் 25x-ஐக் கழிக்கவும்.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}}}{2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 1, b-க்குப் பதிலாக -25 மற்றும் c-க்குப் பதிலாக 0-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-25\right)±25}{2}
\left(-25\right)^{2}-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{25±25}{2}
-25-க்கு எதிரில் இருப்பது 25.
x=\frac{50}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{25±25}{2}-ஐத் தீர்க்கவும். 25-க்கு 25-ஐக் கூட்டவும்.
x=25
50-ஐ 2-ஆல் வகுக்கவும்.
x=\frac{0}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{25±25}{2}-ஐத் தீர்க்கவும். 25–இலிருந்து 25–ஐக் கழிக்கவும்.
x=0
0-ஐ 2-ஆல் வகுக்கவும்.
x=25 x=0
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
x^{2}-25x=0
இரு பக்கங்களில் இருந்தும் 25x-ஐக் கழிக்கவும்.
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=\left(-\frac{25}{2}\right)^{2}
-\frac{25}{2}-ஐப் பெற, x உறுப்பின் ஈவான -25-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{25}{2}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-25x+\frac{625}{4}=\frac{625}{4}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{25}{2}-ஐ வர்க்கமாக்கவும்.
\left(x-\frac{25}{2}\right)^{2}=\frac{625}{4}
காரணி x^{2}-25x+\frac{625}{4}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{\frac{625}{4}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-\frac{25}{2}=\frac{25}{2} x-\frac{25}{2}=-\frac{25}{2}
எளிமையாக்கவும்.
x=25 x=0
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{25}{2}-ஐக் கூட்டவும்.