பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

a+b=9 ab=14
சமன்பாட்டைத் தீர்க்க, x^{2}+9x+14 காரணியானது x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) சூத்திரத்தைப் பயன்படுத்துகிறது. a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,14 2,7
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் நேர்மறையாக இருக்கும். 14 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1+14=15 2+7=9
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=2 b=7
9 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x+2\right)\left(x+7\right)
பெறப்பட்ட மதிப்புகளைப் பயன்படுத்தி பின்னக் கோவை \left(x+a\right)\left(x+b\right)-ஐ மீண்டும் எழுதவும்.
x=-2 x=-7
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x+2=0 மற்றும் x+7=0-ஐத் தீர்க்கவும்.
a+b=9 ab=1\times 14=14
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை x^{2}+ax+bx+14-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,14 2,7
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் நேர்மறையாக இருக்கும். 14 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1+14=15 2+7=9
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=2 b=7
9 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x^{2}+2x\right)+\left(7x+14\right)
x^{2}+9x+14 என்பதை \left(x^{2}+2x\right)+\left(7x+14\right) என மீண்டும் எழுதவும்.
x\left(x+2\right)+7\left(x+2\right)
முதல் குழுவில் x மற்றும் இரண்டாவது குழுவில் 7-ஐக் காரணிப்படுத்தவும்.
\left(x+2\right)\left(x+7\right)
பரவல் பண்பைப் பயன்படுத்தி x+2 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x=-2 x=-7
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x+2=0 மற்றும் x+7=0-ஐத் தீர்க்கவும்.
x^{2}+9x+14=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-9±\sqrt{9^{2}-4\times 14}}{2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 1, b-க்குப் பதிலாக 9 மற்றும் c-க்குப் பதிலாக 14-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-9±\sqrt{81-4\times 14}}{2}
9-ஐ வர்க்கமாக்கவும்.
x=\frac{-9±\sqrt{81-56}}{2}
14-ஐ -4 முறை பெருக்கவும்.
x=\frac{-9±\sqrt{25}}{2}
-56-க்கு 81-ஐக் கூட்டவும்.
x=\frac{-9±5}{2}
25-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=-\frac{4}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-9±5}{2}-ஐத் தீர்க்கவும். 5-க்கு -9-ஐக் கூட்டவும்.
x=-2
-4-ஐ 2-ஆல் வகுக்கவும்.
x=-\frac{14}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-9±5}{2}-ஐத் தீர்க்கவும். -9–இலிருந்து 5–ஐக் கழிக்கவும்.
x=-7
-14-ஐ 2-ஆல் வகுக்கவும்.
x=-2 x=-7
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
x^{2}+9x+14=0
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
x^{2}+9x+14-14=-14
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 14-ஐக் கழிக்கவும்.
x^{2}+9x=-14
14-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=-14+\left(\frac{9}{2}\right)^{2}
\frac{9}{2}-ஐப் பெற, x உறுப்பின் ஈவான 9-ஐ 2-ஆல் வகுக்கவும். பிறகு \frac{9}{2}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}+9x+\frac{81}{4}=-14+\frac{81}{4}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், \frac{9}{2}-ஐ வர்க்கமாக்கவும்.
x^{2}+9x+\frac{81}{4}=\frac{25}{4}
\frac{81}{4}-க்கு -14-ஐக் கூட்டவும்.
\left(x+\frac{9}{2}\right)^{2}=\frac{25}{4}
காரணி x^{2}+9x+\frac{81}{4}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x+\frac{9}{2}=\frac{5}{2} x+\frac{9}{2}=-\frac{5}{2}
எளிமையாக்கவும்.
x=-2 x=-7
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{9}{2}-ஐக் கழிக்கவும்.