பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x^{2}+7x-12=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-7±\sqrt{7^{2}-4\left(-12\right)}}{2}
இந்தச் சமன்பாடு வழக்கமான வடிவத்தில் உள்ளது: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} என்ற இருபடி சூத்திரத்தில் a-க்குப் பதிலாக 1, b-க்குப் பதிலாக 7 மற்றும் c-க்கு பதிலாக -12-ஐ பதலீடு செய்யவும்.
x=\frac{-7±\sqrt{49-4\left(-12\right)}}{2}
7-ஐ வர்க்கமாக்கவும்.
x=\frac{-7±\sqrt{49+48}}{2}
-12-ஐ -4 முறை பெருக்கவும்.
x=\frac{-7±\sqrt{97}}{2}
48-க்கு 49-ஐக் கூட்டவும்.
x=\frac{\sqrt{97}-7}{2}
இப்போது ± நேர்மறையாக உள்ளபோது x=\frac{-7±\sqrt{97}}{2} சமன்பாட்டைத் தீர்க்கவும். \sqrt{97}-க்கு -7-ஐக் கூட்டவும்.
x=\frac{-\sqrt{97}-7}{2}
இப்போது ± எதிர்மறையாக உள்ளபோது x=\frac{-7±\sqrt{97}}{2} சமன்பாட்டைத் தீர்க்கவும். -7–இலிருந்து \sqrt{97}–ஐக் கழிக்கவும்.
x=\frac{\sqrt{97}-7}{2} x=\frac{-\sqrt{97}-7}{2}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
x^{2}+7x-12=0
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
x^{2}+7x-12-\left(-12\right)=-\left(-12\right)
சமன்பாட்டின் இரு பக்கங்களிலும் 12-ஐக் கூட்டவும்.
x^{2}+7x=-\left(-12\right)
-12-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
x^{2}+7x=12
0–இலிருந்து -12–ஐக் கழிக்கவும்.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=12+\left(\frac{7}{2}\right)^{2}
\frac{7}{2}-ஐப் பெற, x உறுப்பின் ஈவான 7-ஐ 2-ஆல் வகுக்கவும். பிறகு \frac{7}{2}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}+7x+\frac{49}{4}=12+\frac{49}{4}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், \frac{7}{2}-ஐ வர்க்கமாக்கவும்.
x^{2}+7x+\frac{49}{4}=\frac{97}{4}
\frac{49}{4}-க்கு 12-ஐக் கூட்டவும்.
\left(x+\frac{7}{2}\right)^{2}=\frac{97}{4}
காரணி x^{2}+7x+\frac{49}{4}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும் போது, அதை எப்போதும் \left(x+\frac{b}{2}\right)^{2} ஆகக் காரணிப்படுத்தலாம்.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{97}{4}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x+\frac{7}{2}=\frac{\sqrt{97}}{2} x+\frac{7}{2}=-\frac{\sqrt{97}}{2}
எளிமையாக்கவும்.
x=\frac{\sqrt{97}-7}{2} x=\frac{-\sqrt{97}-7}{2}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{7}{2}-ஐக் கழிக்கவும்.