பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

a+b=6 ab=9
சமன்பாட்டைத் தீர்க்க, x^{2}+6x+9 காரணியானது x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) சூத்திரத்தைப் பயன்படுத்துகிறது. a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,9 3,3
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் நேர்மறையாக இருக்கும். 9 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1+9=10 3+3=6
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=3 b=3
6 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x+3\right)\left(x+3\right)
பெறப்பட்ட மதிப்புகளைப் பயன்படுத்தி பின்னக் கோவை \left(x+a\right)\left(x+b\right)-ஐ மீண்டும் எழுதவும்.
\left(x+3\right)^{2}
ஈருறுப்பு வர்க்கமாக மீண்டும் எழுதவும்.
x=-3
சமன்பாட்டுத் தீர்வைக் கண்டறிய, x+3=0-ஐத் தீர்க்கவும்.
a+b=6 ab=1\times 9=9
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை x^{2}+ax+bx+9-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,9 3,3
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் நேர்மறையாக இருக்கும். 9 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1+9=10 3+3=6
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=3 b=3
6 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x^{2}+3x\right)+\left(3x+9\right)
x^{2}+6x+9 என்பதை \left(x^{2}+3x\right)+\left(3x+9\right) என மீண்டும் எழுதவும்.
x\left(x+3\right)+3\left(x+3\right)
முதல் குழுவில் x மற்றும் இரண்டாவது குழுவில் 3-ஐக் காரணிப்படுத்தவும்.
\left(x+3\right)\left(x+3\right)
பரவல் பண்பைப் பயன்படுத்தி x+3 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
\left(x+3\right)^{2}
ஈருறுப்பு வர்க்கமாக மீண்டும் எழுதவும்.
x=-3
சமன்பாட்டுத் தீர்வைக் கண்டறிய, x+3=0-ஐத் தீர்க்கவும்.
x^{2}+6x+9=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-6±\sqrt{6^{2}-4\times 9}}{2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 1, b-க்குப் பதிலாக 6 மற்றும் c-க்குப் பதிலாக 9-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-6±\sqrt{36-4\times 9}}{2}
6-ஐ வர்க்கமாக்கவும்.
x=\frac{-6±\sqrt{36-36}}{2}
9-ஐ -4 முறை பெருக்கவும்.
x=\frac{-6±\sqrt{0}}{2}
-36-க்கு 36-ஐக் கூட்டவும்.
x=-\frac{6}{2}
0-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=-3
-6-ஐ 2-ஆல் வகுக்கவும்.
\left(x+3\right)^{2}=0
காரணி x^{2}+6x+9. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x+3\right)^{2}}=\sqrt{0}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x+3=0 x+3=0
எளிமையாக்கவும்.
x=-3 x=-3
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 3-ஐக் கழிக்கவும்.
x=-3
இப்போது சமன்பாடு தீர்க்கப்பட்டது. தீர்வுகள் ஒன்றுதான்.