பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x^{2}+3x+\frac{5}{4}=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-3±\sqrt{3^{2}-4\times \frac{5}{4}}}{2}
இந்தச் சமன்பாடு வழக்கமான வடிவத்தில் உள்ளது: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} என்ற இருபடி சூத்திரத்தில் a-க்குப் பதிலாக 1, b-க்குப் பதிலாக 3 மற்றும் c-க்கு பதிலாக \frac{5}{4}-ஐ பதலீடு செய்யவும்.
x=\frac{-3±\sqrt{9-4\times \frac{5}{4}}}{2}
3-ஐ வர்க்கமாக்கவும்.
x=\frac{-3±\sqrt{9-5}}{2}
\frac{5}{4}-ஐ -4 முறை பெருக்கவும்.
x=\frac{-3±\sqrt{4}}{2}
-5-க்கு 9-ஐக் கூட்டவும்.
x=\frac{-3±2}{2}
4-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=-\frac{1}{2}
இப்போது ± நேர்மறையாக உள்ளபோது x=\frac{-3±2}{2} சமன்பாட்டைத் தீர்க்கவும். 2-க்கு -3-ஐக் கூட்டவும்.
x=-\frac{5}{2}
இப்போது ± எதிர்மறையாக உள்ளபோது x=\frac{-3±2}{2} சமன்பாட்டைத் தீர்க்கவும். -3–இலிருந்து 2–ஐக் கழிக்கவும்.
x=-\frac{1}{2} x=-\frac{5}{2}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
x^{2}+3x+\frac{5}{4}=0
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
x^{2}+3x+\frac{5}{4}-\frac{5}{4}=-\frac{5}{4}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{5}{4}-ஐக் கழிக்கவும்.
x^{2}+3x=-\frac{5}{4}
\frac{5}{4}-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{5}{4}+\left(\frac{3}{2}\right)^{2}
\frac{3}{2}-ஐப் பெற, x உறுப்பின் ஈவான 3-ஐ 2-ஆல் வகுக்கவும். பிறகு \frac{3}{2}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}+3x+\frac{9}{4}=\frac{-5+9}{4}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், \frac{3}{2}-ஐ வர்க்கமாக்கவும்.
x^{2}+3x+\frac{9}{4}=1
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{9}{4} உடன் -\frac{5}{4}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
\left(x+\frac{3}{2}\right)^{2}=1
காரணி x^{2}+3x+\frac{9}{4}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும் போது, அதை எப்போதும் \left(x+\frac{b}{2}\right)^{2} ஆகக் காரணிப்படுத்தலாம்.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{1}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x+\frac{3}{2}=1 x+\frac{3}{2}=-1
எளிமையாக்கவும்.
x=-\frac{1}{2} x=-\frac{5}{2}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{3}{2}-ஐக் கழிக்கவும்.