பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x^{2}+20x-15=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
x=\frac{-20±\sqrt{20^{2}-4\left(-15\right)}}{2}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-20±\sqrt{400-4\left(-15\right)}}{2}
20-ஐ வர்க்கமாக்கவும்.
x=\frac{-20±\sqrt{400+60}}{2}
-15-ஐ -4 முறை பெருக்கவும்.
x=\frac{-20±\sqrt{460}}{2}
60-க்கு 400-ஐக் கூட்டவும்.
x=\frac{-20±2\sqrt{115}}{2}
460-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{2\sqrt{115}-20}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-20±2\sqrt{115}}{2}-ஐத் தீர்க்கவும். 2\sqrt{115}-க்கு -20-ஐக் கூட்டவும்.
x=\sqrt{115}-10
-20+2\sqrt{115}-ஐ 2-ஆல் வகுக்கவும்.
x=\frac{-2\sqrt{115}-20}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-20±2\sqrt{115}}{2}-ஐத் தீர்க்கவும். -20–இலிருந்து 2\sqrt{115}–ஐக் கழிக்கவும்.
x=-\sqrt{115}-10
-20-2\sqrt{115}-ஐ 2-ஆல் வகுக்கவும்.
x^{2}+20x-15=\left(x-\left(\sqrt{115}-10\right)\right)\left(x-\left(-\sqrt{115}-10\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு -10+\sqrt{115}-ஐயும், x_{2}-க்கு -10-\sqrt{115}-ஐயும் பதிலீடு செய்யவும்.