பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\left(x^{8}-1\right)\left(x^{8}+1\right)
x^{16}-1 என்பதை \left(x^{8}\right)^{2}-1^{2} என மீண்டும் எழுதவும். வர்க்கங்களின் வேறுபாட்டை இந்த விதியைப் பயன்படுத்தி காரணிப்படுத்தலாம்: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{4}-1\right)\left(x^{4}+1\right)
x^{8}-1-ஐக் கருத்தில் கொள்ளவும். x^{8}-1 என்பதை \left(x^{4}\right)^{2}-1^{2} என மீண்டும் எழுதவும். வர்க்கங்களின் வேறுபாட்டை இந்த விதியைப் பயன்படுத்தி காரணிப்படுத்தலாம்: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{2}-1\right)\left(x^{2}+1\right)
x^{4}-1-ஐக் கருத்தில் கொள்ளவும். x^{4}-1 என்பதை \left(x^{2}\right)^{2}-1^{2} என மீண்டும் எழுதவும். வர்க்கங்களின் வேறுபாட்டை இந்த விதியைப் பயன்படுத்தி காரணிப்படுத்தலாம்: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-1\right)\left(x+1\right)
x^{2}-1-ஐக் கருத்தில் கொள்ளவும். x^{2}-1 என்பதை x^{2}-1^{2} என மீண்டும் எழுதவும். வர்க்கங்களின் வேறுபாட்டை இந்த விதியைப் பயன்படுத்தி காரணிப்படுத்தலாம்: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)\left(x^{8}+1\right)
முழுமையான பின்னக் கோவையை மீண்டும் எழுதவும். பின்வரும் அடுக்குக்கோவைகளில் பிரிப்பு வர்க்கங்கள் எதுவும் இல்லாததால் அவற்றைப் பின்னமாக்க முடியவில்லை: x^{2}+1,x^{4}+1,x^{8}+1.