x-க்காகத் தீர்க்கவும்
x\in \mathrm{R}
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
xx>-18
சமன்பாட்டின் இரு பக்கங்களையும் -3-ஆல் பெருக்கவும். -3-ஆனது எதிர்மறை என்பதால், வேற்றுமை திசை மாற்றப்பட்டது.
x^{2}>-18
x மற்றும் x-ஐப் பெருக்கவும், தீர்வு x^{2}.
x\in \mathrm{R}
x^{2} கோவையின் மதிப்பு எப்போதும் ≥0 ஆகும். x\in \mathrm{R}-க்கான சமமின்மை வைத்திருப்புகள்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}