x, y-க்காகத் தீர்க்கவும்
x = \frac{12}{5} = 2\frac{2}{5} = 2.4
y = \frac{24}{5} = 4\frac{4}{5} = 4.8
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
9x-2y=12
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
x+2y=12,9x-2y=12
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x+2y=12
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=-2y+12
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2y-ஐக் கழிக்கவும்.
9\left(-2y+12\right)-2y=12
பிற சமன்பாடு 9x-2y=12-இல் x-க்கு -2y+12-ஐப் பிரதியிடவும்.
-18y+108-2y=12
-2y+12-ஐ 9 முறை பெருக்கவும்.
-20y+108=12
-2y-க்கு -18y-ஐக் கூட்டவும்.
-20y=-96
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 108-ஐக் கழிக்கவும்.
y=\frac{24}{5}
இரு பக்கங்களையும் -20-ஆல் வகுக்கவும்.
x=-2\times \frac{24}{5}+12
x=-2y+12-இல் y-க்கு \frac{24}{5}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{48}{5}+12
\frac{24}{5}-ஐ -2 முறை பெருக்கவும்.
x=\frac{12}{5}
-\frac{48}{5}-க்கு 12-ஐக் கூட்டவும்.
x=\frac{12}{5},y=\frac{24}{5}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
9x-2y=12
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
x+2y=12,9x-2y=12
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&2\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\12\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&2\\9&-2\end{matrix}\right))\left(\begin{matrix}1&2\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
\left(\begin{matrix}1&2\\9&-2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-2\times 9}&-\frac{2}{-2-2\times 9}\\-\frac{9}{-2-2\times 9}&\frac{1}{-2-2\times 9}\end{matrix}\right)\left(\begin{matrix}12\\12\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{10}\\\frac{9}{20}&-\frac{1}{20}\end{matrix}\right)\left(\begin{matrix}12\\12\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 12+\frac{1}{10}\times 12\\\frac{9}{20}\times 12-\frac{1}{20}\times 12\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{5}\\\frac{24}{5}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{12}{5},y=\frac{24}{5}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
9x-2y=12
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
x+2y=12,9x-2y=12
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
9x+9\times 2y=9\times 12,9x-2y=12
x மற்றும் 9x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 9-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
9x+18y=108,9x-2y=12
எளிமையாக்கவும்.
9x-9x+18y+2y=108-12
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 9x+18y=108-இலிருந்து 9x-2y=12-ஐக் கழிக்கவும்.
18y+2y=108-12
-9x-க்கு 9x-ஐக் கூட்டவும். விதிகள் 9x மற்றும் -9x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
20y=108-12
2y-க்கு 18y-ஐக் கூட்டவும்.
20y=96
-12-க்கு 108-ஐக் கூட்டவும்.
y=\frac{24}{5}
இரு பக்கங்களையும் 20-ஆல் வகுக்கவும்.
9x-2\times \frac{24}{5}=12
9x-2y=12-இல் y-க்கு \frac{24}{5}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
9x-\frac{48}{5}=12
\frac{24}{5}-ஐ -2 முறை பெருக்கவும்.
9x=\frac{108}{5}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{48}{5}-ஐக் கூட்டவும்.
x=\frac{12}{5}
இரு பக்கங்களையும் 9-ஆல் வகுக்கவும்.
x=\frac{12}{5},y=\frac{24}{5}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}