பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\left(x+1\right)^{2}=\left(\sqrt{3x+7}\right)^{2}
சமன்பாட்டின் இரு பக்கங்களையும் வர்க்கமாக்கவும்.
x^{2}+2x+1=\left(\sqrt{3x+7}\right)^{2}
\left(x+1\right)^{2}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a+b\right)^{2}=a^{2}+2ab+b^{2} பயன்படுத்தவும்.
x^{2}+2x+1=3x+7
2-இன் அடுக்கு \sqrt{3x+7}-ஐ கணக்கிட்டு, 3x+7-ஐப் பெறவும்.
x^{2}+2x+1-3x=7
இரு பக்கங்களில் இருந்தும் 3x-ஐக் கழிக்கவும்.
x^{2}-x+1=7
2x மற்றும் -3x-ஐ இணைத்தால், தீர்வு -x.
x^{2}-x+1-7=0
இரு பக்கங்களில் இருந்தும் 7-ஐக் கழிக்கவும்.
x^{2}-x-6=0
1-இலிருந்து 7-ஐக் கழிக்கவும், தீர்வு -6.
a+b=-1 ab=-6
சமன்பாட்டைத் தீர்க்க, x^{2}-x-6 காரணியானது x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) சூத்திரத்தைப் பயன்படுத்துகிறது. a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,-6 2,-3
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -6 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1-6=-5 2-3=-1
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-3 b=2
-1 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x-3\right)\left(x+2\right)
பெறப்பட்ட மதிப்புகளைப் பயன்படுத்தி பின்னக் கோவை \left(x+a\right)\left(x+b\right)-ஐ மீண்டும் எழுதவும்.
x=3 x=-2
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x-3=0 மற்றும் x+2=0-ஐத் தீர்க்கவும்.
3+1=\sqrt{3\times 3+7}
சமன்பாடு x+1=\sqrt{3x+7}-இல் x-க்கு 3-ஐ பதிலிடவும்.
4=4
எளிமையாக்கவும். சமன்பாட்டை x=3 மதிப்பு பூர்த்திசெய்கிறது.
-2+1=\sqrt{3\left(-2\right)+7}
சமன்பாடு x+1=\sqrt{3x+7}-இல் x-க்கு -2-ஐ பதிலிடவும்.
-1=1
எளிமையாக்கவும். x=-2 மதிப்பு சமன்பாட்டைப் பூர்த்தி செய்யவில்லை, ஏனெனில் இடதுபுறமும் வலதுபுறமும் எதிர்க்குறிகள் உள்ளன.
x=3
x+1=\sqrt{3x+7} சமன்பாட்டிற்கு ஒரு தனித்துவமான தீர்வு உள்ளது.