பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x\left(1-x\right)
x-ஐக் காரணிப்படுத்தவும்.
-x^{2}+x=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
x=\frac{-1±\sqrt{1^{2}}}{2\left(-1\right)}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-1±1}{2\left(-1\right)}
1^{2}-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-1±1}{-2}
-1-ஐ 2 முறை பெருக்கவும்.
x=\frac{0}{-2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-1±1}{-2}-ஐத் தீர்க்கவும். 1-க்கு -1-ஐக் கூட்டவும்.
x=0
0-ஐ -2-ஆல் வகுக்கவும்.
x=-\frac{2}{-2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-1±1}{-2}-ஐத் தீர்க்கவும். -1–இலிருந்து 1–ஐக் கழிக்கவும்.
x=1
-2-ஐ -2-ஆல் வகுக்கவும்.
-x^{2}+x=-x\left(x-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு 0-ஐயும், x_{2}-க்கு 1-ஐயும் பதிலீடு செய்யவும்.